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A few classes of Cayley graphs CaypK ,Sq defined in terms of

AutpK ,Sq (setwise stabiliser of S in AutpK q)
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Motivation

Question
What network topologies enable efficient data transmission?

• Measure of efficiency
• transmission time (e.g. gossiping time, broadcasting time)
• congestion on edges/arcs/vertices
• etc.

• What are the ‘most efficient’ graphs (of small degree) with
respect to these measures?
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Routing

Design a data transmission route (oriented path) for each
ordered pair of vertices.

• A set of such oriented paths is called an all-to-all routing

• Load of an edge = number of paths traversing the edge
in either direction

• An arc is an oriented edge

• Load of an arc = number of paths traversing the arc in
its direction
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Edge- and arc-forwarding indices

• LpΓ,Rq “ maximum load of an edge under routing R
• πpΓq “ minR LpΓ,Rq (edge-forwarding index)

• πmpΓq: use shortest paths only (minimal e.f.i.)

• ÝÑπ pΓq (arc-forwarding index)

• ÝÑπ mpΓq: use shortest paths only (minimal a.f.i.)
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Trivial lower bounds

πmpΓq ě πpΓq ě

ř

u,vPV dpu, vq

|E |

Equality iff there exists an edge-uniform shortest path
routing

ÝÑπ mpΓq ě ÝÑπ pΓq ě

ř

u,vPV dpu, vq

2|E |

Equality iff there exists an arc-uniform shortest path routing

Question
I: Which graphs can achieve these bounds?
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Gossiping

In least number of time steps, transmit a distinct message at
each vertex to all other vertices:

• a vertex must receive a message wholly before forwarding
it to other vertices (store-and-forward)

• ‘all-neighbour transmission’ at the same time step
(all-port)

• bidirectional transmission on each edge (full-duplex)

• no two messages can be concurrently transmitted over the
same arc

• one time step to transmit one message over an arc
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Gossiping time

Definition
Gossiping time of a graph Γ “ pV ,E q:

tpΓq “ minimum time steps required

A trivial bound:

tpΓq ě

R

n ´ 1

δ

V

,

where n is the order and δ the minimum degree of Γ

Question
II: Which graphs can achieve this bound?
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Broadcasting

In least number of time steps, transmit a message from a
specific source vertex to all other vertices:

• at each time step, any vertex who has got the message
already can retransmit it to at most one of its neighbours

• one time step to transmit over an arc

Definition
For every u P V , define

bpΓ, uq “ minimum time steps if u is the source vertex

Broadcasting time of Γ:

bpΓq “ max
u

bpΓ, uq
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Semidirect product

Definition
Let H and K be groups such that H acts on K as a group.
That is, there is a homomorphism H Ñ AutpK q.

The semidirect product of K by H, K .H, is the group on
K ˆ H under the operation:

pk1, h1qpk2, h2q :“ pk1k
h´1
1

2 , h1h2q.

Equivalently, G “ K .H if

K E G ,H ď G ,G “ HK ,H X K “ 1.
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Frobenius groups

Definition
A Frobenius group is a transitive group such that

• there exist non-identity elements fixing one point

• only the identity element can fix two points

Theorem
(Thompson 1959)
A finite Frobenius group G on V has a nilpotent normal
subgroup K ( Frobenius kernel) which is regular on V . Thus

G “ K .H

where H is the stabiliser of a point of V .

We may identify V with K such that K acts on itself by right
multiplication and H (stabiliser of 1) acts on K by conjugation.



Motivation

Frobenius
graphs

6-valent FFCs
and EJ
networks

Rotational
circulants

FFCs of
valency 2p or
2p2

Cyclotomic
graphs

Frobenius groups

Definition
A Frobenius group is a transitive group such that

• there exist non-identity elements fixing one point

• only the identity element can fix two points

Theorem
(Thompson 1959)
A finite Frobenius group G on V has a nilpotent normal
subgroup K ( Frobenius kernel) which is regular on V . Thus

G “ K .H

where H is the stabiliser of a point of V .

We may identify V with K such that K acts on itself by right
multiplication and H (stabiliser of 1) acts on K by conjugation.



Motivation

Frobenius
graphs

6-valent FFCs
and EJ
networks

Rotational
circulants

FFCs of
valency 2p or
2p2

Cyclotomic
graphs

Frobenius groups

Definition
A Frobenius group is a transitive group such that

• there exist non-identity elements fixing one point

• only the identity element can fix two points

Theorem
(Thompson 1959)
A finite Frobenius group G on V has a nilpotent normal
subgroup K ( Frobenius kernel) which is regular on V . Thus

G “ K .H

where H is the stabiliser of a point of V .

We may identify V with K such that K acts on itself by right
multiplication and H (stabiliser of 1) acts on K by conjugation.



Motivation

Frobenius
graphs

6-valent FFCs
and EJ
networks

Rotational
circulants

FFCs of
valency 2p or
2p2

Cyclotomic
graphs

First-kind Frobenius graphs

Definition
(Solé 1994, Fang-Li-Praeger 1998)
Let G “ K .H be a finite Frobenius group.

Let a P K and let

aH :“ th´1ah : h P Hu

be the H-orbit on K containing a.

Suppose xaHy “ K and |H| is even or |a| “ 2.

Call
CaypK , aHq

a first-kind G -Frobenius graph.
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(Solé 1994, Fang-Li-Praeger 1998)
Let G “ K .H be a finite Frobenius group.

Let a P K and let

aH :“ th´1ah : h P Hu

be the H-orbit on K containing a.

Suppose xaHy “ K and |H| is even or |a| “ 2.

Call
CaypK , aHq

a first-kind G -Frobenius graph.



Motivation

Frobenius
graphs

6-valent FFCs
and EJ
networks

Rotational
circulants

FFCs of
valency 2p or
2p2

Cyclotomic
graphs

Partial answer to Question I

Theorem
(Solé 1994, Fang-Li-Praeger 1998)
Let Γ be a (first- or second-kind) G-Frobenius graph. Then

πpΓq “

ř

u,vPV dpu, vq

|E |
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Theorem
(Zhou 2009)
Let Γ be a first-kind G -Frobenius graph, where G “ K .H.
Then there exists a routing which is

(a) a shortest path routing;

(b) G -arc transitive;

(c) both edge- and arc-uniform;

(d) optimal for π, ÝÑπ , ÝÑπ m, πm simultaneously.

Moreover, if the H-orbits on K are known, we can construct
such a routing in polynomial time. Furthermore, we have

πpΓq “ 2ÝÑπ pΓq “ 2ÝÑπ mpΓq “ πmpΓq

An algorithm for producing many routings with the properties
above was given.
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Partial answer to Question II

Theorem
(Zhou 2009)
Let Γ be a first-kind G -Frobenius graph, where G “ K .H.
Then

tpΓq “
|K | ´ 1

|S |
.

Moreover, there exist optimal gossiping schemes such that

(a) messages are always transmitted along shortest paths;

(b) at any time every arc is used exactly once for message
transmission;

(c) at any time ě 2 and for any vertex g, the set Apgq of arcs
transmitting the message originated from g is a matching
of Γ, and tApgq : g P Ku is a partition of the arcs of Γ.

Furthermore, if we know the H-orbits on K , then we can
construct such schemes in polynomial time.
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Remarks

• In theory, first-kind Frobenius graphs are ‘perfect’ as far as
routing and gossiping are concerned

• This is part of a more general framework

• Second-kind Frobenius graphs are also good but not as
good as first-kind Frobenius graphs for gossiping

• It is desirable to construct concrete families of first-kind
Frobenius graphs of small valency

• FFC: first-kind Frobenius circulant

• Classification of 4-valent FFCs (Thomson and Zhou 2008)

• Classification of 6-valent FFCs (Thomson and Zhou
2008-2014)
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6-valent circulants

• Circulant graph:

C pn,Sq :“ CaypZn,Sq

where ´S “ S Ď Znzt0u

• Triple-loop network:

TLnpa, b, cq :“ C pn, t˘a,˘b,˘cuq

where n ě 7 and 1 ď a, b, c ď n ´ 1 such that
a, b, c , n ´ a, n ´ b, n ´ c are pairwise distinct

• We consider TLnpa, b, 1q only



Motivation

Frobenius
graphs

6-valent FFCs
and EJ
networks

Rotational
circulants

FFCs of
valency 2p or
2p2

Cyclotomic
graphs

Geometric triple-loop network

Definition
(Yebra, Fiol, Morillo and Alegre 85) TLnpa, b, cq is geometric
if

a1 ` b1 ` c 1 ” 0 mod n

for some a1 P ta, n ´ au, b1 P tb, n ´ bu, c 1 P tc , n ´ cu.

4�5� � � � � � �4�6� � � � � � �4�7� � � � � �4�8� � � � � � � �0� � � � � � � � �1� � � � � � � � �2� � � � � � � � �3� � � � � � � �4�

2�7� � � � � � �2�8� � � � � � �2�9� � � � � �3�0� � � � � � �3�1� � � � � � �3�2� � � � � � �3�3� � � � � � �3�4�

9� � � � � � � �1�0� � � � � � �1�1� � � � � �1�2� � � � � � �1�3� � � � � � �1�4� � � � � � �1�5�

4�0� � � � � � �4�1� � � � � � �4�2� � � � � � �4�3� � � � � � �4�4� � � � � �4�5�

2�2� � � � � �2�3� � � � � � �2�4� � � � � � �2�5� � � � � � �2�6�

1�5� � � � � � �1�6� � � � � �1�7� � � � � � �1�8� � � � � � �1�9� � � � � � �2�0� � � � � � �2�1� � � � � � �2�2�

3�4� � � � � � �3�5� � � � � �3�6� � � � � � �3�7� � � � � � �3�8� � � � � � �3�9� � � � � � �4�0�

4� � � � � � � � �5� � � � � � � � �6� � � � � � � �7� � � � � � � � �8� � � � � � � � �9�

2�3� � � � � �2�4� � � � � � �2�5� � � � � � �2�6� � � � � � �2�7�

Hexagonal tessellation of TL49p31, 1, 30q
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Rotational Cayley graphs

Definition
(Bermond, Kodate and Pérennes 1996)
A complete rotation of CaypK , Sq is an automorphism of K
that induces a cyclic permutation on S .

CaypK , Sq is rotational if it admits a complete rotation.

(Fragopoulou, Akl and Meijer 1996)
A rotation of CaypK , Sq is an inner automorphism of K that
induces a cyclic permutation on S .

For example, Hpd , qq is rotational when q is a prime power.



Motivation

Frobenius
graphs

6-valent FFCs
and EJ
networks

Rotational
circulants

FFCs of
valency 2p or
2p2

Cyclotomic
graphs

Rotational Cayley graphs

Definition
(Bermond, Kodate and Pérennes 1996)
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…	
  

s = s0 = ω(sd-1)  

s i+1 = ω(s i) 

si = ω(si-1) 

1	
  

A complete rotation ω of CaypK ,Sq:

S “ sxωy “ ts, sω, . . . , sω
d´1

u
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Rotational Cayley graphs v.s.
balanced regular Cayley maps

Definition
A cyclic permutation ρ of S induces a natural embedding of
CaypG , Sq, giving a Cayley map M “ CMpG ,S , ρq.

(Škoviera and Širáň 1992) M is balanced if ρps´1q “ ρpsq´1

for s P S , and regular if AutpMq is regular on the set of arcs of
CaypG , Sq.

A complete rotation in a Cayley graph ô a 2-cell embedding
on a closed orientable surface as a balanced regular Cayley map
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Theorem
(Thomson and Zhou 2008-2014)
Let n “ pe1

1 ¨ ¨ ¨ p
et
t ě 7. There exists a 6-valent FFC

TLnpa, b, 1q of order n (with cyclic kernel) iff

n ” 1 mod 6

and
x2 ´ x ` 1 ” 0 mod n

has a solution. Moreover, if these conditions hold, then

(a) each solution a gives rise to a 6-valent FFC
TLnpa, a´ 1, 1q, and vice versa, which is rotational,
geometric and Zn.xrasy-arc-transitive with complete
rotations ras and ´ra2s;

(b) there are exactly 2t´1 non-isomorphic such circulants.
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Optimal routing, gossiping and
broadcasting

• We gave optimal routing and gossiping for TLnpa, a´ 1, 1q
by applying the general results for first-kind Frobenius
graphs and using knowledge of H-orbits on Zn

• Such knowledge was obtained via Eisenstein-Jacobi
networks

• Formula for edge-forwarding index is messy

• Gossiping time = pn ´ 1q{6

• Broadcasting time = diameter + (2 or 3)
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HARTS (hexagonal meshes)

• A distributed real-time computing system [Chen, Shin and
Kandlur, IEEE Trans. Comp., 1990]

• Physically built at the Real-Time Comp. Lab, U. Michigan

• Properties studied in [Dolter, et al. IEEE Trans. Comp.,
1991] and [Albader, et al. IEEE Trans. P.D.S., 2012]

• Denote nd “ 3d2 ` 3d ` 1, d ě 2

• TLnd “ TLnd p3d ` 2, 3d ` 1, 1q has the maximum possible
order among all 6-valent geometric circulants of diameter
k (Yebra, Fiol, Morillo and Alegre 1985)

• TLnd is a first-kind Frobenius graph (Thomson and Zhou
2010)

• HART: Hd – TLnd´1
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EJ networks
C. Martinez, R. Beivide and E. Gabidulin, Perfect codes for
metrics induced by circulant graphs, IEEE Trans. I.T., 2007
• ρ “ p1`

?
´3q{2

• Zrρs “ tx ` yρ : x , y P Zu (Eisenstein-Jacobi integers)
• α “ a` bρ P Zrρs, α ‰ t0u
• Npαq “ a2 ` ab ` b2 (norm)
• Zrρsα “ Zrρs{pαq
• Hα “ t˘r1sα,˘rρsα,˘rρ

2sαu

Definition
EJ network: EJα “ CaypZrρsα,Hαq

Theorem
(Thomson and Zhou 2014)

t6-valent FFCsu

“ tEJa`bρ : Npa` bρq ” 1 mod 6, gcdpa, bq “ 1u
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Rotational Cayley graphs

Let ω be a complete rotation of CaypK , Sq.

A fixed point of ω is an element g P Kzt1u that is fixed by
some ωi ‰ 1.

Theorem
(Bermond, Kodate and Pérennes 1996)
If CaypK , Sq admits a complete rotation whose fixed point set
is an independent set and not a vertex-cut, then

tpCaypK , Sqq “

R

|K | ´ 1

|S |

V

E.g. hypercubes, star graphs and multi-dimensional tori, etc.
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Theorem
(Zhou 2009) We have

tpCaypK , Sqq “

R

|K | ´ 1

|S |

V

if there exists H ď AutpK q such that H fixes S setwise and is
regular on S, and KzX is an independent set and not a
vertex-cut of Γ, where

X “ tx P K : Hx “ 1u Y t1u.

In the special case where H “ xωy for a complete rotation ω of
CaypK , Sq, we have

X “ tx P K : pxω
i
“ x ñ i “ 0qu Y t1u

and so KzX is the set of fixed points of ω. The result above
generalises the previous result of BKP.
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Classification of rotational FFCs

Theorem
(Thomson and Zhou 2014)
Let n “ pe1

1 . . . pet
t and D “ gcdpp1 ´ 1, . . . , pt ´ 1q.

(a) D a rotational FFC with kernel Zn and valency d iff n is
odd and d is an even divisor of D.

(b) ϕpdql´1 such circulants (pairwise non-isomorphic)

(c) Each is isomorphic to CaypZn, xrhsyq, where
h “

řt
i“1pn{p

ei
i qbihi , with bi pn{p

ei
i q ” 1 pmod pei

i q and

hi ” η
miϕpp

ei
i q{d

i pmod pei
i q for a fixed primitive root ηi

mod pei
i and an integer mi coprime to d.

Special case: if n “ pe , then for every even divisor d of p ´ 1,
there is a unique rotational FFC of order pe and valency d .
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An example

Example

Let n “ 6253 “ 132 ˆ 37, so that p1 “ 13, p2 “ 37, and
D “ gcdp12, 36q “ 12.

Choose η1 “ η2 “ 2, which is a primitive root mod 13 as well
as a primitive root mod 37.

We have b1 ” 37´1 ” 32 pmod 132q and b2 ” p132q´1 ” 30
pmod 37q.

The even divisors of D are d “ 2, 4, 6 and 12, and they produce
respectively ϕpdq “ 1, 2, 2 and 4 non-isomorphic rotational
first-kind Frobenius circulants CaypZ6253,Sq with kernel Z6253.
These circulants are listed in the following table, omitting the
pairs pm1,m2q that produce a circulant isomorphic to one
already in the table.
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respectively ϕpdq “ 1, 2, 2 and 4 non-isomorphic rotational
first-kind Frobenius circulants CaypZ6253,Sq with kernel Z6253.
These circulants are listed in the following table, omitting the
pairs pm1,m2q that produce a circulant isomorphic to one
already in the table.
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d pm1,m2q ph1, h2q h

2 ´r1s

4 (1, 1) (99, 31) ´r746s

4 (1, 3) (99, 6) ´r2436s

6 (1, 1) (147, 27) ´r1712s

6 (5, 5) (147, 11) ´r1543s

12 (1, 1) (80, 8) ´r2286s

12 (1, 5) (80, 23) ´r1272s

12 (1, 7) (80, 29) ´r2117s

12 (1, 11) (80, 14) `r3122s

Table: All rotational first-kind Frobenius circulants with kernel Z6253
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Theorem
(Thomson and Zhou 2014)
We know exactly when a FFC can be embedded on a closed
orientable surface as a balanced regular Cayley map.

Theorem
(Conder and Tucker 2012+)
Regular Cayley maps for the cyclic group of every possible
order are classified.
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2p-valent FFCs

Theorem
(Zhou 2014)
Let p be an odd prime and n ě 2p ` 1.
A 2p-valent circulant C pn, Sq with r1s P S is a FFC with cyclic
kernel if and only if

n ” 1 mod 2p

and
S “ xrasy

for some a such that ap ` 1 ” 0 mod n and
ai ˘ 1, 1 ď i ď p ´ 1 are all coprime to n.

In this case C pn, xrasyq is a Zn.xrasy-arc transitive first-kind
Zn.xrasy-Frobenius circulant.
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2p2-valent FFCs

Theorem
(Zhou 2014)
All 2p2-valent FFCs are classified, for all primes p.
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Cyclotomic graphs

• ζm: primitive mth root of unity, e.g. ζm “ e2πi{m, m ě 2

• Qpζmq: corresponding cyclotomic field

• Zrζms “ ta0 ` a1ζm ` . . .` am´1ζ
m´1
m : ai P Zu

• Zrζms is the ring of algebraic integers in Qpζmq

Definition
Le A ‰ t0u an ideal of Zrζms. Denote

Em{A :“ t˘pζ im ` Aq : 0 ď i ď m ´ 1u.

Call
GmpAq :“ CaypZrζms{A,Em{Aq

the mth cyclotomic graph w.r.t. A.

In other words, α` A, β ` A P Zrζms{A are adjacent in GmpAq
iff α´ β ´ ζ im P A or α´ β ` ζ im P A for some i .
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Two special cases

Example

Consider m “ 2 and ζ2 “ i .

Zris is an Euclidean domain and so all ideals are principal ideals
pαq.

G2ppαqq is called a Gaussian network.

Example

Consider m “ 3 and ζ3 “ ρ “ p1`
?

3iq{2.

Zrρs is also Euclidean.

G3ppαqq “ EJα is an EJ network.

There are precisely 29 cyclotomic fields Qpζmq such that Zrζms
is a principal ideal domain.
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Norm

• NpAq: norm of A, i.e. the size of Zrζms{A (finite by
number theory)

• Npαq “ NQpζmq{Qpαq: norm of α P Qpζmq
• Npαq ě 0 is an integer for α P Zrζms
• Npαq “ Nppαqq for α P Zrζms
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Theorem
(Zhou 2014)

(a) GmpAq is finite, connected, undirected with order NpAq
and valency |Em{A| ď 2m;

(b) GmpAq has valency 2m iff 1˘ ζ im R A for 1 ď i ď m´ 1; in
particular, if Npαq ě 3 for every α P A, then GmpAq has
valency 2m;



Motivation

Frobenius
graphs

6-valent FFCs
and EJ
networks

Rotational
circulants

FFCs of
valency 2p or
2p2

Cyclotomic
graphs

Cyclotomic graphs

Theorem
(Zhou 2014)

(a) GmpAq is finite, connected, undirected with order NpAq
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Theorem
(cont’d)

(c) if GmpAq has valency 2m, letting

HA :“ tp´ζmq
i ` A : 0 ď i ď 2m ´ 1u,

then pZrζms{Aq.HA is isomorphic to a subgroup of
AutpGmpAqq and is transitive on the vertex set of GmpAq;
moreover, if m is odd, then pZrζms{Aq.HA is arc-transitive
on GmpAq, and if m is even, then pZrζms{Aq.HA is
edge-transitive but not arc-transitive on GmpAq;

(d) if GmpAq has valency 2m, then it is rotational.
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Theorem
(cont’d)

(c) if GmpAq has valency 2m, letting

HA :“ tp´ζmq
i ` A : 0 ď i ď 2m ´ 1u,

then pZrζms{Aq.HA is isomorphic to a subgroup of
AutpGmpAqq and is transitive on the vertex set of GmpAq;
moreover, if m is odd, then pZrζms{Aq.HA is arc-transitive
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Theorem
(Zhou 2014)
Let m ě 3 and n ě 5 be odd positive integers, and let a be an
integer with 1 ă a ă n.
Suppose that n ” 1 mod 2m, am ` 1 ” 0 mod n, and ai ˘ 1
for 1 ď i ď m ´ 1 are all coprime to n.
Then C pn, xrasyq is isomorphic to an mth cyclotomic graph of
valency 2m.

When is the converse true? (under investigation)

Choosing m “ p, we obtain:

Corollary

All 2p-valent FFCs are cyclotomic.
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Distance in cyclotomic graphs

Let α “
řm´1

i“0 aiζ
i
m P Zrζms. Define the Manhattan weight

by

|α| :“
m´1
ÿ

i“0

|ai |.

For ᾱ “ α` A, define the Mannheim weight by

}ᾱ} :“ mint|α´ δ| : δ P Au

Lemma
(Zhou 2014)

(a) ᾱ and β̄ are adjacent in GmpAq iff }ᾱ´ β̄} “ 1;

(b) In general, the distance in GmpAq between ᾱ and β̄ is
equal to }ᾱ´ β̄}.
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(b) In general, the distance in GmpAq between ᾱ and β̄ is
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Other results on cyclotomic graphs

• Hamilton decomposability of Gmppαqq when Npαq is a
prime

• Necessary and sufficient condition for D{A to be a perfect
t-dominating set (equivalently a perfect t-error correcting
group code of length one), where D is an ideal of Zrζms
with A Ď D

• In particular, improvements of some known results on
perfect t-dominating sets in Gaussian and EJ networs

• Quotients of cyclotomic graphs and covers
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