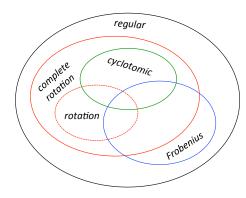
Constructing Cayley graphs for efficient data transmission

Sanming Zhou

Department of Mathematics and Statistics The University of Melbourne Australia sanming@unimelb.edu.au

IWONT 2014, Bratislava, 30/6-4/7/2014

Graphs to be discussed



A few classes of Cayley graphs Cay(K, S) defined in terms of Aut(K, S) (setwise stabiliser of S in Aut(K))

Motivation

Frobenius graphs

6-valent FFCs and EJ networks

Rotational circulants

FFCs of valency 2p or $2p^2$

Cyclotomi graphs

• Motivation

- Frobenius graphs
- 6-valent first-kind Frobenius circulants and Eisenstein-Jacobi networks
- Rotational circulants
- FFCs of valency 2p or $2p^2$
- Cyclotomic graphs

- Motivation
- Frobenius graphs
- 6-valent first-kind Frobenius circulants and Eisenstein-Jacobi networks
- Rotational circulants
- FFCs of valency 2p or $2p^2$
- Cyclotomic graphs

- Motivation
- Frobenius graphs
- 6-valent first-kind Frobenius circulants and Eisenstein-Jacobi networks
- Rotational circulants
- FFCs of valency 2p or $2p^2$
- Cyclotomic graphs

- Motivation
- Frobenius graphs
- 6-valent first-kind Frobenius circulants and Eisenstein-Jacobi networks
- Rotational circulants
- FFCs of valency 2p or $2p^2$
- Cyclotomic graphs

- Motivation
- Frobenius graphs
- 6-valent first-kind Frobenius circulants and Eisenstein-Jacobi networks
- Rotational circulants
- FFCs of valency 2p or $2p^2$
- Cyclotomic graphs

- Motivation
- Frobenius graphs
- 6-valent first-kind Frobenius circulants and Eisenstein-Jacobi networks
- Rotational circulants
- FFCs of valency 2p or $2p^2$
- Cyclotomic graphs

Motivation

Frobenius graphs

6-valent FFCs and EJ networks

Rotational circulants

FFCs of valency 2p or $2p^2$

Cyclotomic graphs

Question

What network topologies enable efficient data transmission?

- Measure of efficiency
 - transmission time (e.g. gossiping time, broadcasting time)
 - congestion on edges/arcs/vertices
 - etc.
- What are the 'most efficient' graphs (of small degree) with respect to these measures?

Motivation

Frobenius graphs

6-valent FFCs and EJ networks

Rotational circulants

FFCs of valency 2p or $2p^2$

Cyclotomic graphs

Question

What network topologies enable efficient data transmission?

- Measure of efficiency
 - transmission time (e.g. gossiping time, broadcasting time)
 - congestion on edges/arcs/vertices
 - etc.
- What are the 'most efficient' graphs (of small degree) with respect to these measures?

Motivation

Frobenius graphs

6-valent FFCs and EJ networks

Rotational circulants

FFCs of valency 2p or $2p^2$

Cyclotomic graphs

- A set of such oriented paths is called an all-to-all routing
- Load of an edge = number of paths traversing the edge in either direction
- An arc is an oriented edge
- Load of an arc = number of paths traversing the arc in its direction

Motivation

Frobenius graphs

6-valent FFCs and EJ networks

Rotational circulants

FFCs of valency 2p or $2p^2$

Cyclotomic graphs

- A set of such oriented paths is called an all-to-all routing
- Load of an edge = number of paths traversing the edge in either direction
- An arc is an oriented edge
- Load of an arc = number of paths traversing the arc in its direction

Motivation

Frobenius graphs

6-valent FFCs and EJ networks

Rotational circulants

FFCs of valency 2p or $2p^2$

Cyclotomic graphs

- A set of such oriented paths is called an all-to-all routing
- Load of an edge = number of paths traversing the edge in either direction
- An arc is an oriented edge
- Load of an arc = number of paths traversing the arc in its direction

Motivation

Frobenius graphs

6-valent FFCs and EJ networks

Rotational circulants

FFCs of valency 2p or $2p^2$

Cyclotomic graphs

- A set of such oriented paths is called an all-to-all routing
- Load of an edge = number of paths traversing the edge in either direction
- An arc is an oriented edge
- Load of an arc = number of paths traversing the arc in its direction

Frobenius graphs

6-valent FFCs and EJ networks

Rotational circulants

FFCs of valency 2p or $2p^2$

Cyclotomic graphs

- $L(\Gamma, \mathcal{R}) = maximum$ load of an edge under routing \mathcal{R}
- $\pi(\Gamma) = \min_{\mathcal{R}} L(\Gamma, \mathcal{R})$ (edge-forwarding index)
- $\pi_m(\Gamma)$: use shortest paths only (minimal e.f.i.)
- $\overrightarrow{\pi}(\Gamma)$ (arc-forwarding index)
- $\overrightarrow{\pi}_m(\Gamma)$: use shortest paths only (minimal a.f.i.)

Frobenius graphs

6-valent FFCs and EJ networks

Rotational circulants

FFCs of valency 2p or 2p²

Cyclotomic graphs

- $L(\Gamma, \mathcal{R}) = maximum$ load of an edge under routing \mathcal{R}
- $\pi(\Gamma) = \min_{\mathcal{R}} L(\Gamma, \mathcal{R})$ (edge-forwarding index)
- $\pi_m(\Gamma)$: use shortest paths only (minimal e.f.i.)
- $\overrightarrow{\pi}(\Gamma)$ (arc-forwarding index)
- $\overrightarrow{\pi}_m(\Gamma)$: use shortest paths only (minimal a.f.i.)

Frobenius graphs

6-valent FFCs and EJ networks

Rotational circulants

FFCs of valency 2p or 2p²

Cyclotomic graphs

- $L(\Gamma, \mathcal{R}) = maximum$ load of an edge under routing \mathcal{R}
- $\pi(\Gamma) = \min_{\mathcal{R}} L(\Gamma, \mathcal{R})$ (edge-forwarding index)
- $\pi_m(\Gamma)$: use shortest paths only (minimal e.f.i.)
- $\vec{\pi}(\Gamma)$ (arc-forwarding index)
- $\overrightarrow{\pi}_m(\Gamma)$: use shortest paths only (minimal a.f.i.)

Frobenius graphs

6-valent FFCs and EJ networks

Rotational circulants

FFCs of valency 2p or 2p²

Cyclotomic graphs

- $L(\Gamma, \mathcal{R}) = maximum$ load of an edge under routing \mathcal{R}
- $\pi(\Gamma) = \min_{\mathcal{R}} L(\Gamma, \mathcal{R})$ (edge-forwarding index)
- $\pi_m(\Gamma)$: use shortest paths only (minimal e.f.i.)
- $\vec{\pi}(\Gamma)$ (arc-forwarding index)
- $\vec{\pi}_m(\Gamma)$: use shortest paths only (minimal a.f.i.)

Frobenius graphs

6-valent FFCs and EJ networks

Rotational circulants

FFCs of valency 2p or 2p²

Cyclotomic graphs

- $L(\Gamma, \mathcal{R}) = maximum$ load of an edge under routing \mathcal{R}
- $\pi(\Gamma) = \min_{\mathcal{R}} L(\Gamma, \mathcal{R})$ (edge-forwarding index)
- $\pi_m(\Gamma)$: use shortest paths only (minimal e.f.i.)
- $\vec{\pi}(\Gamma)$ (arc-forwarding index)
- $\vec{\pi}_m(\Gamma)$: use shortest paths only (minimal a.f.i.)

Trivial lower bounds

$$\pi_m(\Gamma) \ge \pi(\Gamma) \ge \frac{\sum_{u,v \in V} d(u,v)}{|E|}$$

Rotational circulants

Motivation

FFCs of valency 2p or 2p²

Cyclotomic graphs

Equality iff there exists an edge-uniform shortest path routing

$$\overrightarrow{\pi}_{m}(\Gamma) \ge \overrightarrow{\pi}(\Gamma) \ge \frac{\sum_{u,v \in V} d(u,v)}{2|E|}$$

Equality **iff** there exists an **arc-uniform shortest path routing** Question

I: Which graphs can achieve these bounds?

Trivial lower bounds

$$\pi_m(\Gamma) \ge \pi(\Gamma) \ge \frac{\sum_{u, v \in V} d(u, v)}{|E|}$$

circulants FFCs of

Cyclotomic graphs

Equality **iff** there exists an **edge-uniform shortest path routing**

$$\vec{\pi}_m(\Gamma) \ge \vec{\pi}(\Gamma) \ge \frac{\sum_{u,v \in V} d(u,v)}{2|E|}$$

Equality **iff** there exists an **arc-uniform shortest path routing** Question

I: Which graphs can achieve these bounds?

Motivation

Frobenius graphs

6-valent FFCs and EJ networks

Trivial lower bounds

$$\pi_m(\Gamma) \ge \pi(\Gamma) \ge \frac{\sum_{u, v \in V} d(u, v)}{|E|}$$

circulants FFCs of

valency 2p or 2p²

Cyclotomic graphs

Equality **iff** there exists an **edge-uniform shortest path routing**

$$\vec{\pi}_{m}(\Gamma) \geq \vec{\pi}(\Gamma) \geq \frac{\sum_{u,v \in V} d(u,v)}{2|E|}$$

Equality **iff** there exists an **arc-uniform shortest path routing** Question

I: Which graphs can achieve these bounds?

Motivation

Frobenius graphs

and EJ networks

Motivation

- Frobenius graphs
- 6-valent FFCs and EJ networks
- Rotational circulants
- FFCs of valency 2p or $2p^2$
- Cyclotomic graphs

- a vertex must receive a message wholly before forwarding it to other vertices (**store-and-forward**)
- 'all-neighbour transmission' at the same time step (all-port)
- bidirectional transmission on each edge (full-duplex)
- no two messages can be concurrently transmitted over the same arc
- one time step to transmit one message over an arc

Motivation

- Frobenius graphs
- 6-valent FFCs and EJ networks
- Rotational circulants
- FFCs of valency 2p or $2p^2$
- Cyclotomic graphs

- In least number of time steps, transmit a distinct message at each vertex to all other vertices:
 - a vertex must receive a message wholly before forwarding it to other vertices (**store-and-forward**)
 - 'all-neighbour transmission' at the same time step (all-port)
 - bidirectional transmission on each edge (full-duplex)
 - no two messages can be concurrently transmitted over the same arc
 - one time step to transmit one message over an arc

Motivation

- Frobenius graphs
- 6-valent FFCs and EJ networks
- Rotational circulants
- FFCs of valency 2p or 2p²
- Cyclotomic graphs

- a vertex must receive a message wholly before forwarding it to other vertices (**store-and-forward**)
- 'all-neighbour transmission' at the same time step (all-port)
- bidirectional transmission on each edge (full-duplex)
- no two messages can be concurrently transmitted over the same arc
- one time step to transmit one message over an arc

Motivation

- Frobenius graphs
- 6-valent FFCs and EJ networks
- Rotational circulants
- FFCs of valency 2p or $2p^2$
- Cyclotomic graphs

- a vertex must receive a message wholly before forwarding it to other vertices (**store-and-forward**)
- 'all-neighbour transmission' at the same time step (all-port)
- bidirectional transmission on each edge (full-duplex)
- no two messages can be concurrently transmitted over the same arc
- one time step to transmit one message over an arc

Motivation

- Frobenius graphs
- 6-valent FFCs and EJ networks
- Rotational circulants
- FFCs of valency 2p or $2p^2$
- Cyclotomic graphs

- a vertex must receive a message wholly before forwarding it to other vertices (**store-and-forward**)
- 'all-neighbour transmission' at the same time step (all-port)
- bidirectional transmission on each edge (full-duplex)
- no two messages can be concurrently transmitted over the same arc
- one time step to transmit one message over an arc

Motivation

- Frobenius graphs
- 6-valent FFCs and EJ networks
- Rotational circulants
- FFCs of valency 2p or 2p²
- Cyclotomic graphs

- a vertex must receive a message wholly before forwarding it to other vertices (**store-and-forward**)
- 'all-neighbour transmission' at the same time step (all-port)
- bidirectional transmission on each edge (full-duplex)
- no two messages can be concurrently transmitted over the same arc
- one time step to transmit one message over an arc

Gossiping time

Motivation

Frobenius graphs

6-valent FFCs and EJ networks

Rotational circulants

FFCs of valency 2p or $2p^2$

Cyclotomi graphs

Definition Gossiping time of a graph $\Gamma = (V, E)$:

 $t(\Gamma) = minimum time steps required$

A trivial bound:

$$t(\Gamma) \geqslant \left\lceil \frac{n-1}{\delta} \right\rceil,$$

where *n* is the order and δ the minimum degree of Γ Question II: Which graphs can achieve this bound?

Gossiping time

Motivation

Frobenius graphs

6-valent FFCs and EJ networks

Rotational circulants

FFCs of valency 2p or $2p^2$

Cyclotomi graphs

Definition

Gossiping time of a graph $\Gamma = (V, E)$:

 $t(\Gamma) = minimum \text{ time steps required}$

A trivial bound:

$$t(\Gamma) \ge \left\lceil \frac{n-1}{\delta} \right\rceil,$$

where *n* is the order and δ the minimum degree of Γ Question II: Which graphs can achieve this bound?

Gossiping time

Motivation

Frobenius graphs

6-valent FFCs and EJ networks

Rotational circulants

FFCs of valency 2p or $2p^2$

Cyclotomi graphs

Definition

Gossiping time of a graph $\Gamma = (V, E)$:

 $t(\Gamma) = minimum time steps required$

A trivial bound:

$$t(\Gamma) \ge \left\lceil \frac{n-1}{\delta} \right\rceil,$$

where *n* is the order and δ the minimum degree of Γ Question II: Which graphs can achieve this bound?

Broadcasting

Motivation

Frobenius graphs

6-valent FFCs and EJ networks

Rotational circulants

FFCs of valency 2p or $2p^2$

Cyclotomic graphs In least number of time steps, transmit a message from a specific source vertex to all other vertices:

- at each time step, any vertex who has got the message already can retransmit it to **at most one** of its neighbours
- one time step to transmit over an arc

```
Definition
```

```
For every u \in V, define
```

 $b(\Gamma, u) =$ minimum time steps if u is the source vertex

Broadcasting time of Γ :

$$b(\Gamma) = \max_{u} b(\Gamma, u)$$

Broadcasting

Motivation

Frobenius graphs

6-valent FFCs and EJ networks

Rotational circulants

FFCs of valency 2p or 2p²

Cyclotomic graphs In least number of time steps, transmit a message from a specific source vertex to all other vertices:

- at each time step, any vertex who has got the message already can retransmit it to **at most one** of its neighbours
- one time step to transmit over an arc

Definition

For every $u \in V$, define

 $b(\Gamma, u) =$ minimum time steps if u is the source vertex

Broadcasting time of Γ :

$$b(\Gamma) = \max_{u} b(\Gamma, u)$$

Semidirect product

Motivation

Frobenius graphs

6-valent FFCs and EJ networks

Rotational circulants

FFCs of valency 2p of $2p^2$

Cyclotomi graphs

Definition

Let H and K be groups such that H acts on K as a group. That is, there is a homomorphism $H \rightarrow Aut(K)$.

The **semidirect product** of *K* by *H*, *K*.*H*, is the group on $K \times H$ under the operation:

$$(k_1, h_1)(k_2, h_2) := (k_1 k_2^{h_1^{-1}}, h_1 h_2)$$

Equivalently, G = K.H if

 $K \leq G, H \leq G, G = HK, H \cap K = 1.$

Semidirect product

Motivation

Frobenius graphs

6-valent FFCs and EJ networks

Rotational circulants

FFCs of valency 2p of 2p²

Cyclotomi graphs

Definition

Let *H* and *K* be groups such that *H* acts on *K* as a group. That is, there is a homomorphism $H \rightarrow Aut(K)$.

The **semidirect product** of *K* by *H*, *K*.*H*, is the group on $K \times H$ under the operation:

$$(k_1, h_1)(k_2, h_2) := (k_1 k_2^{h_1^{-1}}, h_1 h_2).$$

Equivalently, G = K.H if

 $K \leq G, H \leq G, G = HK, H \cap K = 1.$

Semidirect product

Motivation

Frobenius graphs

6-valent FFCs and EJ networks

Rotational circulants

FFCs of valency 2p of 2p²

Cyclotomic graphs

Definition

Let *H* and *K* be groups such that *H* acts on *K* as a group. That is, there is a homomorphism $H \rightarrow Aut(K)$.

The **semidirect product** of *K* by *H*, *K*.*H*, is the group on $K \times H$ under the operation:

$$(k_1, h_1)(k_2, h_2) := (k_1 k_2^{h_1^{-1}}, h_1 h_2).$$

Equivalently, G = K.H if

 $K \trianglelefteq G, H \leqslant G, G = HK, H \cap K = 1.$

Frobenius groups

Motivation

Frobenius graphs

6-valent FFCs and EJ networks

Rotational circulants

FFCs of valency 2p or 2p²

Cyclotomic graphs

Definition

A Frobenius group is a transitive group such that

- there exist non-identity elements fixing one point
- only the identity element can fix two points

Theorem

(Thompson 1959)

A finite Frobenius group G on V has a nilpotent normal subgroup K (**Frobenius kernel**) which is regular on V. Thus

$$G = K.H$$

where H is the stabiliser of a point of V.

We may identify V with K such that K acts on itself by right multiplication and H (stabiliser of 1) acts on K by conjugation.

Frobenius groups

Motivation

Frobenius graphs

6-valent FFCs and EJ networks

Rotational circulants

FFCs of valency 2p or 2p²

Cyclotomic graphs

Definition

A Frobenius group is a transitive group such that

- there exist non-identity elements fixing one point
- only the identity element can fix two points

heorem

(Thompson 1959)

A finite Frobenius group G on V has a nilpotent normal subgroup K (**Frobenius kernel**) which is regular on V. Thus

$$G = K.H$$

where H is the stabiliser of a point of V.

We may identify V with K such that K acts on itself by right multiplication and H (stabiliser of 1) acts on K by conjugation.

Frobenius groups

Motivation

Frobenius graphs

6-valent FFCs and EJ networks

Rotational circulants

FFCs of valency 2p o 2p²

Cyclotomic graphs

Definition

A $\ensuremath{\textit{Frobenius group}}$ is a transitive group such that

- there exist non-identity elements fixing one point
- only the identity element can fix two points

Theorem

(Thompson 1959) A finite Frobenius group G on V has a nilpotent normal

subgroup K (Frobenius kernel) which is regular on V. Thus

$$G = K.H$$

where H is the stabiliser of a point of V.

We may identify V with K such that K acts on itself by right multiplication and H (stabiliser of 1) acts on K by conjugation.

Frobenius graphs

6-valent FFCs and EJ networks

Rotational circulants

FFCs of valency 2p or 2p²

Cyclotomic graphs

First-kind Frobenius graphs

Definition (Solé 1994, Fang-Li-Praeger 1998) Let G = K.H be a finite Frobenius group.

et $a \in K$ and let

$$a^H := \{h^{-1}ah : h \in H\}$$

```
be the H-orbit on K containing a.
Suppose \langle a^H \rangle = K and |H| is even or |a| = 2.
Call
Cay(K, a^H)
```

Frobenius graphs

6-valent FFCs and EJ networks

Rotational circulants

FFCs of valency 2*p* or 2*p*²

Cyclotomic graphs

First-kind Frobenius graphs

Definition

```
(Solé 1994, Fang-Li-Praeger 1998)
Let G = K.H be a finite Frobenius group.
```

Let $a \in K$ and let

$$a^{H} := \{h^{-1}ah : h \in H\}$$

be the H-orbit on K containing a.

Suppose $\langle a^H \rangle = K$ and |H| is even or |a| = 2. Call Cay (K, a^H)

Frobenius graphs

6-valent FFCs and EJ networks

Rotational circulants

FFCs of valency 2*p* or 2*p*²

Cyclotomic graphs

First-kind Frobenius graphs

Definition

```
(Solé 1994, Fang-Li-Praeger 1998)
Let G = K.H be a finite Frobenius group.
```

Let $a \in K$ and let

$$a^{H} := \{h^{-1}ah : h \in H\}$$

```
be the H-orbit on K containing a.
Suppose \langle a^H \rangle = K and |H| is even or |a| = 2.
Call
Cay(K, a^H)
```

Frobenius graphs

6-valent FFCs and EJ networks

Rotational circulants

FFCs of valency 2*p* or 2*p*²

Cyclotomic graphs

First-kind Frobenius graphs

Definition

```
(Solé 1994, Fang-Li-Praeger 1998)
Let G = K.H be a finite Frobenius group.
```

Let $a \in K$ and let

$$a^{H} := \{h^{-1}ah : h \in H\}$$

be the *H*-orbit on *K* containing *a*. Suppose $\langle a^H \rangle = K$ and |H| is even or |a| = 2. Call $Cay(K, a^H)$

Frobenius graphs

6-valent FFCs and EJ networks

Rotational circulants

FFCs of valency 2p or 2p²

Cyclotomi graphs

Partial answer to Question I

Theorem

(Solé 1994, Fang-Li-Praeger 1998) Let Γ be a (first- or second-kind) G-Frobenius graph. Then

$$\pi(\Gamma) = \frac{\sum_{u,v \in V} d(u,v)}{|E|}$$

Frobenius graphs

6-valent FFCs and EJ networks

Rotational circulants

FFCs of valency 2p o 2p²

Cyclotomic graphs (Zhou 2009)

Let Γ be a first-kind G-Frobenius graph, where G = K.H. Then there exists a routing which is

(a) a shortest path routing;

- (b) *G*-arc transitive;
- (c) both edge- and arc-uniform;

(d) optimal for π , $\vec{\pi}$, $\vec{\pi}_m$, π_m simultaneously.

Moreover, if the H-orbits on K are known, we can construct such a routing in polynomial time. Furthermore, we have

$$\pi(\Gamma) = 2\overrightarrow{\pi}(\Gamma) = 2\overrightarrow{\pi}_m(\Gamma) = \pi_m(\Gamma)$$

An algorithm for producing many routings with the properties above was given.

Frobenius graphs

6-valent FFCs and EJ networks

Rotational circulants

FFCs of valency 2p o 2p²

Cyclotomic graphs

(Zhou 2009)

Let Γ be a first-kind G-Frobenius graph, where G = K.H. Then there exists a routing which is

(a) a shortest path routing;

- (b) *G*-arc transitive;
- (c) both edge- and arc-uniform;

(d) optimal for π , $\overrightarrow{\pi}$, $\overrightarrow{\pi}_m$, π_m simultaneously.

Moreover, if the H-orbits on K are known, we can construct such a routing in polynomial time. Furthermore, we have

$$\pi(\Gamma) = 2\overrightarrow{\pi}(\Gamma) = 2\overrightarrow{\pi}_m(\Gamma) = \pi_m(\Gamma)$$

An algorithm for producing many routings with the properties above was given.

Frobenius graphs

6-valent FFCs and EJ networks

Rotational circulants

FFCs of valency 2p o 2p²

Cyclotomic graphs

(Zhou 2009)

Let Γ be a first-kind G-Frobenius graph, where G = K.H. Then there exists a routing which is

(a) a shortest path routing;

- (b) *G*-arc transitive;
- (c) both edge- and arc-uniform;

(d) optimal for π , $\overrightarrow{\pi}$, $\overrightarrow{\pi}_m$, π_m simultaneously.

Moreover, if the H-orbits on K are known, we can construct such a routing in polynomial time. Furthermore, we have

$$\pi(\Gamma) = 2\overrightarrow{\pi}(\Gamma) = 2\overrightarrow{\pi}_m(\Gamma) = \pi_m(\Gamma)$$

An algorithm for producing many routings with the properties above was given.

Partial answer to Question II

Motivation

Frobenius graphs

6-valent FFCs and EJ networks

Rotational circulants

FFCs of valency 2p or $2p^2$

Cyclotomic graphs

Theorem (Zhou 2009) Let Γ be a first-kind G-Frobenius graph, where G = K.H. Then

$$t(\Gamma)=\frac{|\mathcal{K}|-1}{|\mathcal{S}|}.$$

Moreover, there exist optimal gossiping schemes such that
(a) messages are always transmitted along shortest paths;
(b) at any time every arc is used exactly once for message transmission:

(c) at any time ≥ 2 and for any vertex g, the set A(g) of arcs transmitting the message originated from g is a matching of Γ , and $\{A(g) : g \in K\}$ is a partition of the arcs of Γ .

Furthermore, if we know the H-orbits on K, then we can construct such schemes in polynomial time.

Motivation

Frobenius graphs

6-valent FFCs and EJ networks

Rotational circulants

FFCs of valency 2p or 2p²

Cyclotomic graphs

• In theory, first-kind Frobenius graphs are 'perfect' as far as routing and gossiping are concerned

- This is part of a more general framework
- Second-kind Frobenius graphs are also good but not as good as first-kind Frobenius graphs for gossiping
- It is desirable to construct concrete families of first-kind Frobenius graphs of small valency
- FFC: first-kind Frobenius circulant
- Classification of 4-valent FFCs (Thomson and Zhou 2008)
- Classification of 6-valent FFCs (Thomson and Zhou 2008-2014)

Motivation

Frobenius graphs

- 6-valent FFCs and EJ networks
- Rotational circulants
- FFCs of valency 2p or 2p²
- Cyclotomic graphs

- In theory, first-kind Frobenius graphs are 'perfect' as far as routing and gossiping are concerned
- This is part of a more general framework
- Second-kind Frobenius graphs are also good but not as good as first-kind Frobenius graphs for gossiping
- It is desirable to construct concrete families of first-kind Frobenius graphs of small valency
- FFC: first-kind Frobenius circulant
- Classification of 4-valent FFCs (Thomson and Zhou 2008)
- Classification of 6-valent FFCs (Thomson and Zhou 2008-2014)

Motivation

Frobenius graphs

6-valent FFCs and EJ networks

Rotational circulants

FFCs of valency 2p or 2p²

- In theory, first-kind Frobenius graphs are 'perfect' as far as routing and gossiping are concerned
- This is part of a more general framework
- Second-kind Frobenius graphs are also good but not as good as first-kind Frobenius graphs for gossiping
- It is desirable to construct concrete families of first-kind Frobenius graphs of small valency
- FFC: first-kind Frobenius circulant
- Classification of 4-valent FFCs (Thomson and Zhou 2008)
- Classification of 6-valent FFCs (Thomson and Zhou 2008-2014)

Motivation

Frobenius graphs

6-valent FFCs and EJ networks

Rotational circulants

FFCs of valency 2p or $2p^2$

- In theory, first-kind Frobenius graphs are 'perfect' as far as routing and gossiping are concerned
- This is part of a more general framework
- Second-kind Frobenius graphs are also good but not as good as first-kind Frobenius graphs for gossiping
- It is desirable to construct concrete families of first-kind Frobenius graphs of small valency
- FFC: first-kind Frobenius circulant
- Classification of 4-valent FFCs (Thomson and Zhou 2008)
- Classification of 6-valent FFCs (Thomson and Zhou 2008-2014)

Motivation

Frobenius graphs

6-valent FFCs and EJ networks

Rotational circulants

FFCs of valency 2p or 2p²

- In theory, first-kind Frobenius graphs are 'perfect' as far as routing and gossiping are concerned
- This is part of a more general framework
- Second-kind Frobenius graphs are also good but not as good as first-kind Frobenius graphs for gossiping
- It is desirable to construct concrete families of first-kind Frobenius graphs of small valency
- FFC: first-kind Frobenius circulant
- Classification of 4-valent FFCs (Thomson and Zhou 2008)
- Classification of 6-valent FFCs (Thomson and Zhou 2008-2014)

Motivation

Frobenius graphs

6-valent FFCs and EJ networks

Rotational circulants

FFCs of valency 2p or 2p²

- In theory, first-kind Frobenius graphs are 'perfect' as far as routing and gossiping are concerned
- This is part of a more general framework
- Second-kind Frobenius graphs are also good but not as good as first-kind Frobenius graphs for gossiping
- It is desirable to construct concrete families of first-kind Frobenius graphs of small valency
- FFC: first-kind Frobenius circulant
- Classification of 4-valent FFCs (Thomson and Zhou 2008)
- Classification of 6-valent FFCs (Thomson and Zhou 2008-2014)

Motivation

Frobenius graphs

6-valent FFCs and EJ networks

Rotational circulants

FFCs of valency 2p or 2p²

- In theory, first-kind Frobenius graphs are 'perfect' as far as routing and gossiping are concerned
- This is part of a more general framework
- Second-kind Frobenius graphs are also good but not as good as first-kind Frobenius graphs for gossiping
- It is desirable to construct concrete families of first-kind Frobenius graphs of small valency
- FFC: first-kind Frobenius circulant
- Classification of 4-valent FFCs (Thomson and Zhou 2008)
- Classification of 6-valent FFCs (Thomson and Zhou 2008-2014)

6-valent circulants

• Circulant graph:

$$C(n,S) := \operatorname{Cay}(\mathbb{Z}_n,S)$$

where $-S = S \subseteq \mathbb{Z}_n \setminus \{0\}$

• Triple-loop network:

$$TL_n(a,b,c) := C(n, \{\pm a, \pm b, \pm c\})$$

where $n \ge 7$ and $1 \le a, b, c \le n-1$ such that a, b, c, n-a, n-b, n-c are pairwise distinct

• We consider $TL_n(a, b, 1)$ only

Motivation

Frobenius graphs

6-valent FFCs and EJ networks

Rotational circulants

FFCs of valency 2p o $2p^2$

Geometric triple-loop network

Definition

(Yebra, Fiol, Morillo and Alegre 85) $TL_n(a, b, c)$ is geometric if

$$a'+b'+c'\equiv 0 \mod n$$

for some
$$a' \in \{a, n-a\}, b' \in \{b, n-b\}, c' \in \{c, n-c\}.$$

Hexagonal tessellation of $TL_{49}(31, 1, 30)$

Motivation

Frobenius graphs

6-valent FFCs and EJ networks

Rotational circulants

FFCs of valency 2p or $2p^2$

Motivation

Frobenius graphs

6-valent FFCs and EJ networks

Rotational circulants

FFCs of valency 2p or $2p^2$

Cyclotomic graphs

Definition

(Bermond, Kodate and Pérennes 1996) A **complete rotation** of Cay(K, S) is an automorphism of K that induces a cyclic permutation on S.

Cay(K, S) is **rotational** if it admits a complete rotation.

(Fragopoulou, Akl and Meijer 1996) A **rotation** of Cay(K, S) is an inner automorphism of K that induces a cyclic permutation on S.

Motivation

Frobenius graphs

6-valent FFCs and EJ networks

Rotational circulants

FFCs of valency 2p or 2p²

Cyclotomic graphs

Definition

(Bermond, Kodate and Pérennes 1996) A **complete rotation** of Cay(K, S) is an automorphism of K that induces a cyclic permutation on S.

Cay(K, S) is **rotational** if it admits a complete rotation.

(Fragopoulou, Akl and Meijer 1996) A **rotation** of Cay(K, S) is an inner automorphism of K that induces a cyclic permutation on S.

Motivation

Frobenius graphs

6-valent FFCs and EJ networks

Rotational circulants

FFCs of valency 2p or 2p²

Cyclotomic graphs

Definition

(Bermond, Kodate and Pérennes 1996) A **complete rotation** of Cay(K, S) is an automorphism of K that induces a cyclic permutation on S.

Cay(K, S) is **rotational** if it admits a complete rotation.

(Fragopoulou, Akl and Meijer 1996) A **rotation** of Cay(K, S) is an inner automorphism of K that induces a cyclic permutation on S.

Motivation

Frobenius graphs

6-valent FFCs and EJ networks

Rotational circulants

FFCs of valency 2p or 2p²

Cyclotomic graphs

Definition

(Bermond, Kodate and Pérennes 1996) A **complete rotation** of Cay(K, S) is an automorphism of K that induces a cyclic permutation on S.

Cay(K, S) is **rotational** if it admits a complete rotation.

(Fragopoulou, Akl and Meijer 1996) A **rotation** of Cay(K, S) is an inner automorphism of K that induces a cyclic permutation on S.

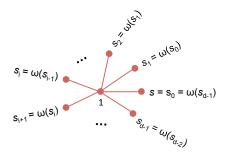
Frobeniu graphs

6-valent FFCs and EJ networks

Rotational circulants

FFCs of valency 2p or $2p^2$

Cyclotomi graphs



A complete rotation ω of Cay(K, S): $S = s^{\langle \omega \rangle} = \{s, s^{\omega}, \dots, s^{\omega^{d-1}}\}$

Frobeniu: graphs

6-valent FFCs and EJ networks

Rotational circulants

FFCs of valency 2p or 2p²

Cyclotomic graphs

Rotational Cayley graphs v.s. balanced regular Cayley maps

Definition

A cyclic permutation ρ of S induces a natural embedding of Cay(G, S), giving a **Cayley map** $M = CM(G, S, \rho)$.

(Škoviera and Širáň 1992) M is **balanced** if $\rho(s^{-1}) = \rho(s)^{-1}$ for $s \in S$, and **regular** if Aut(M) is regular on the set of arcs of Cay(G, S).

A complete rotation in a Cayley graph \Leftrightarrow a 2-cell embedding on a closed orientable surface as a balanced regular Cayley map

Frobeniu: graphs

6-valent FFCs and EJ networks

Rotational circulants

FFCs of valency 2p or 2p²

Cyclotomic graphs

Rotational Cayley graphs v.s. balanced regular Cayley maps

Definition

A cyclic permutation ρ of S induces a natural embedding of Cay(G, S), giving a **Cayley map** $M = CM(G, S, \rho)$.

(Škoviera and Širáň 1992) M is **balanced** if $\rho(s^{-1}) = \rho(s)^{-1}$ for $s \in S$, and **regular** if Aut(M) is regular on the set of arcs of Cay(G, S).

A complete rotation in a Cayley graph \Leftrightarrow a 2-cell embedding on a closed orientable surface as a balanced regular Cayley map

Frobenius graphs

6-valent FFCs and EJ networks

Rotational circulants

FFCs of valency 2p o $2p^2$

Cyclotomic graphs

(Thomson and Zhou 2008-2014) Let $n = p_1^{e_1} \cdots p_t^{e_t} \ge 7$. There exists a 6-valent FFC $TL_n(a, b, 1)$ of order n (with cyclic kernel) iff

 $n \equiv 1 \mod 6$

and

 $x^2 - x + 1 \equiv 0 \mod n$

has a solution. Moreover, if these conditions hold, then (a) each solution a gives rise to a 6-valent FFC $TL_n(a, \mathbf{a} - \mathbf{1}, 1)$, and vice versa, which is rotational, geometric and \mathbb{Z}_n . $\langle [a] \rangle$ -arc-transitive with complete rotations [a] and $-[a^2]$;

(b) there are exactly 2^{t-1} non-isomorphic such circulants.

Frobenius graphs

6-valent FFCs and EJ networks

Rotational circulants

FFCs of valency 2p or 2p²

Cyclotomic graphs

Optimal routing, gossiping and broadcasting

- We gave optimal routing and gossiping for *TL_n(a, a − 1, 1)* by applying the general results for first-kind Frobenius graphs and using knowledge of *H*-orbits on Z_n
- Such knowledge was obtained via Eisenstein-Jacobi networks
- · Formula for edge-forwarding index is messy
- Gossiping time = (n-1)/6
- Broadcasting time = diameter + (2 or 3)

HARTS (hexagonal meshes)

- Frobenius
- graphs
- 6-valent FFCs and EJ networks
- Rotational circulants
- FFCs of valency 2p or 2p²
- Cyclotomic graphs

- A distributed real-time computing system [Chen, Shin and Kandlur, *IEEE Trans. Comp.*, 1990]
- Physically built at the Real-Time Comp. Lab, U. Michigan
- Properties studied in [Dolter, et al. *IEEE Trans. Comp.*, 1991] and [Albader, et al. *IEEE Trans. P.D.S.*, 2012]
- Denote $n_d = 3d^2 + 3d + 1$, $d \ge 2$
- $TL_{n_d} = TL_{n_d}(3d + 2, 3d + 1, 1)$ has the maximum possible order among all 6-valent geometric circulants of diameter k (Yebra, Fiol, Morillo and Alegre 1985)
- TL_{n_d} is a first-kind Frobenius graph (Thomson and Zhou 2010)
- HART: $H_d \cong TL_{n_{d-1}}$

Motivation

Frobenius graphs

6-valent FFCs and EJ networks

Rotational circulants

FFCs of valency 2p o $2p^2$

Cyclotomic graphs

C. Martinez, R. Beivide and E. Gabidulin, Perfect codes for metrics induced by circulant graphs, *IEEE Trans. I.T.*, 2007

• $\rho = (1 + \sqrt{-3})/2$ • $\mathbb{Z}[\rho] = \{x + y\rho : x, y \in \mathbb{Z}\}$ (Eisenstein-Jacobi integers)

- $\alpha = a + b\rho \in \mathbb{Z}[\rho], \ \alpha \neq \{0\}$
- $N(\alpha) = a^2 + ab + b^2$ (norm)

•
$$\mathbb{Z}[\rho]_{\alpha} = \mathbb{Z}[\rho]/(\alpha)$$

• $H_{\alpha} = \{\pm [1]_{\alpha}, \pm [\rho]_{\alpha}, \pm [\rho^2]_{\alpha}\}$

Definition

EJ network: $EJ_{\alpha} = Cay(\mathbb{Z}[\rho]_{\alpha}, H_{\alpha})$

Theorem (Thomson and Zhou 201

 $\{6\text{-valent FFCs}\}$ $= \{EJ_{a+b\rho} : N(a+b\rho) \equiv 1 \mod 6, \ \gcd(a,b) = 1\}$

Motivation

Frobenius graphs

6-valent FFCs and EJ networks

Rotational circulants

FFCs of valency 2p c 2p²

Cyclotomic graphs C. Martinez, R. Beivide and E. Gabidulin, Perfect codes for metrics induced by circulant graphs, *IEEE Trans. I.T.*, 2007

- $\rho = (1 + \sqrt{-3})/2$
- $\mathbb{Z}[\rho] = \{x + y\rho : x, y \in \mathbb{Z}\}$ (Eisenstein-Jacobi integers)
- $\alpha = \mathbf{a} + \mathbf{b}\rho \in \mathbb{Z}[\rho], \ \alpha \neq \{\mathbf{0}\}$
- $N(\alpha) = a^2 + ab + b^2$ (norm)

•
$$\mathbb{Z}[\rho]_{\alpha} = \mathbb{Z}[\rho]/(\alpha)$$

• $H_{\alpha} = \{\pm [1]_{\alpha}, \pm [\rho]_{\alpha}, \pm [\rho^2]_{\alpha}\}$

Definition

EJ network: $EJ_{\alpha} = Cay(\mathbb{Z}[\rho]_{\alpha}, H_{\alpha})$

Theorem (Thomson and Zhou 2014)

 $\{6\text{-valent FFCs}\}$ $= \{EJ_{a+b\rho} : N(a+b\rho) \equiv 1 \mod 6, \ \gcd(a,b) = 1\}$

Motivation

Frobenius graphs

6-valent FFCs and EJ networks

Rotational circulants

FFCs of valency $2p c 2p^2$

Cyclotomic graphs

C. Martinez, R. Beivide and E. Gabidulin, Perfect codes for metrics induced by circulant graphs, *IEEE Trans. I.T.*, 2007

- $\rho = (1 + \sqrt{-3})/2$
- $\mathbb{Z}[\rho] = \{x + y\rho : x, y \in \mathbb{Z}\}$ (Eisenstein-Jacobi integers)
- $\alpha = \mathbf{a} + \mathbf{b}\rho \in \mathbb{Z}[\rho], \ \alpha \neq \{\mathbf{0}\}$
- $N(\alpha) = a^2 + ab + b^2$ (norm)

•
$$\mathbb{Z}[\rho]_{\alpha} = \mathbb{Z}[\rho]/(\alpha)$$

• $H_{\alpha} = \{\pm [1]_{\alpha}, \pm [\rho]_{\alpha}, \pm [\rho^2]_{\alpha}\}$

Definition

EJ network: $EJ_{\alpha} = Cay(\mathbb{Z}[\rho]_{\alpha}, H_{\alpha})$

Theorem

(Thomson and Zhou 2014)

{6-valent FFCs}

 $= \{ EJ_{a+b\rho} : N(a+b\rho) \equiv 1 \mod 6, \ \gcd(a,b) = 1 \}$

Motivation

Frobenius graphs

6-valent FFCs and EJ networks

Rotational circulants

FFCs of valency $2p c 2p^2$

Cyclotomic graphs

C. Martinez, R. Beivide and E. Gabidulin, Perfect codes for metrics induced by circulant graphs, *IEEE Trans. I.T.*, 2007

- $\rho = (1 + \sqrt{-3})/2$
- $\mathbb{Z}[\rho] = \{x + y\rho : x, y \in \mathbb{Z}\}$ (Eisenstein-Jacobi integers)
- $\alpha = \mathbf{a} + \mathbf{b}\rho \in \mathbb{Z}[\rho], \ \alpha \neq \{\mathbf{0}\}$
- $N(\alpha) = a^2 + ab + b^2$ (norm)

•
$$\mathbb{Z}[\rho]_{\alpha} = \mathbb{Z}[\rho]/(\alpha)$$

• $H_{\alpha} = \{\pm [1]_{\alpha}, \pm [\rho]_{\alpha}, \pm [\rho^2]_{\alpha}\}$

Definition

EJ network: $EJ_{\alpha} = Cay(\mathbb{Z}[\rho]_{\alpha}, H_{\alpha})$

Theorem

(Thomson and Zhou 2014)

 $\{\textit{6-valent FFCs}\}$ = $\{EJ_{a+b\rho} : N(a+b\rho) \equiv 1 \mod 6, \ \gcd(a,b) = 1\}$

Motivation

Frobenius graphs

6-valent FFCs and EJ networks

Rotational circulants

FFCs of valency 2p or $2p^2$

Cyclotomic graphs

Let ω be a complete rotation of Cay(K, S).

A fixed point of ω is an element $g \in K \setminus \{1\}$ that is fixed by some $\omega^i \neq 1$.

Theorem

(Bermond, Kodate and Pérennes 1996)

If Cay(K, S) admits a complete rotation whose fixed point set is an independent set and not a vertex-cut, then

$$t(Cay(K,S)) = \left\lceil \frac{|K|-1}{|S|} \right\rceil$$

E.g. hypercubes, star graphs and multi-dimensional tori, etc.

Rotational Cayley graphs

Motivation

Frobenius graphs

6-valent FFCs and EJ networks

Rotational circulants

FFCs of valency 2p or $2p^2$

Cyclotomic graphs

Let ω be a complete rotation of Cay(K, S).

A fixed point of ω is an element $g \in K \setminus \{1\}$ that is fixed by some $\omega^i \neq 1$.

Theorem

(Bermond, Kodate and Pérennes 1996)

If Cay(K, S) admits a complete rotation whose fixed point set is an independent set and not a vertex-cut, then

$$t(Cay(K,S)) = \left\lceil \frac{|K|-1}{|S|} \right\rceil$$

E.g. hypercubes, star graphs and multi-dimensional tori, etc.

Rotational Cayley graphs

Motivation

Frobenius graphs

6-valent FFCs and EJ networks

Rotational circulants

FFCs of valency 2p or $2p^2$

Cyclotomic graphs

Let ω be a complete rotation of Cay(K, S).

A fixed point of ω is an element $g \in K \setminus \{1\}$ that is fixed by some $\omega^i \neq 1$.

Theorem

(Bermond, Kodate and Pérennes 1996)

If Cay(K, S) admits a complete rotation whose fixed point set is an independent set and not a vertex-cut, then

$$t(\mathsf{Cay}(\mathcal{K}, \mathcal{S})) = \left\lceil \frac{|\mathcal{K}| - 1}{|\mathcal{S}|} \right
ching$$

E.g. hypercubes, star graphs and multi-dimensional tori, etc.

Theorem (Zhou 2009) We have

$$t(\mathsf{Cay}(\mathcal{K}, \mathcal{S})) = \left\lceil \frac{|\mathcal{K}| - 1}{|\mathcal{S}|} \right
chinarrow$$

if there exists $H \leq \operatorname{Aut}(K)$ such that H fixes S setwise and is regular on S, and $K \setminus X$ is an independent set and not a vertex-cut of Γ , where

$$X = \{x \in K : H_x = 1\} \cup \{1\}.$$

In the special case where $H = \langle \omega \rangle$ for a complete rotation ω of Cay(K, S), we have

$$X = \{x \in K : (x^{\omega^i} = x \Rightarrow i = 0)\} \cup \{1\}$$

and so $K \setminus X$ is the set of fixed points of ω . The result above generalises the previous result of BKP.

Motivation

Frobenius graphs

6-valent FFCs and EJ networks

Rotational circulants

FFCs of valency 2p or $2p^2$

Theorem (Zhou 2009) We have

$$t(\mathsf{Cay}(\mathcal{K}, \mathcal{S})) = \left\lceil \frac{|\mathcal{K}| - 1}{|\mathcal{S}|} \right\rceil$$

if there exists $H \leq \operatorname{Aut}(K)$ such that H fixes S setwise and is regular on S, and $K \setminus X$ is an independent set and not a vertex-cut of Γ , where

$$X = \{ x \in K : H_x = 1 \} \cup \{ 1 \}.$$

In the special case where $H = \langle \omega \rangle$ for a complete rotation ω of Cay(K, S), we have

$$X = \{x \in K : (x^{\omega^i} = x \Rightarrow i = 0)\} \cup \{1\}$$

and so $K \setminus X$ is the set of fixed points of ω . The result above generalises the previous result of BKP.

Motivation

Frobenius graphs

6-valent FFCs and EJ networks

Rotational circulants

FFCs of valency 2p or $2p^2$

Classification of rotational FFCs

Theorem

and EJ networks

Rotational circulants

FFCs of valency 2p o $2p^2$

Cyclotomic graphs

(Thomson and Zhou 2014) Let $n = p_1^{e_1} \dots p_t^{e_t}$ and $D = \gcd(p_1 - 1, \dots, p_t - 1)$.

- (a) \exists a rotational FFC with kernel \mathbb{Z}_n and valency d **iff** n is odd and d is an even divisor of D.
- (b) φ(d)^{l-1} such circulants (pairwise non-isomorphic)
 (c) Each is isomorphic to Cay(Z_n, ⟨[h]⟩), where h = ∑_{i=1}^t(n/p_i^{e_i})b_ih_i, with b_i(n/p_i^{e_i}) ≡ 1 (mod p_i^{e_i}) and h_i ≡ η_i<sup>m_iφ(p_i^{e_i)/d} (mod p_i^{e_i}) for a fixed primitive root η_i
 </sup>

mod $p_i^{e_i}$ and an integer m_i coprime to d.

Special case: if $n = p^e$, then for every even divisor d of p - 1, there is a unique rotational FFC of order p^e and valency d.

Motivation

Frobenius graphs

6-valent FFCs and EJ networks

Rotational circulants

FFCs of valency 2p or $2p^2$

Cyclotomic graphs

Example

Let $n = 6253 = 13^2 \times 37$, so that $p_1 = 13$, $p_2 = 37$, and $D = \gcd(12, 36) = 12$.

Choose $\eta_1 = \eta_2 = 2$, which is a primitive root mod 13 as well as a primitive root mod 37.

We have $b_1 \equiv 37^{-1} \equiv 32 \pmod{13^2}$ and $b_2 \equiv (13^2)^{-1} \equiv 30 \pmod{37}$.

Motivation

Frobenius graphs

6-valent FFCs and EJ networks

Rotational circulants

FFCs of valency 2p or $2p^2$

Cyclotomic graphs

Example

Let $n = 6253 = 13^2 \times 37$, so that $p_1 = 13$, $p_2 = 37$, and $D = \gcd(12, 36) = 12$.

Choose $\eta_1 = \eta_2 = 2$, which is a primitive root mod 13 as well as a primitive root mod 37.

We have $b_1 \equiv 37^{-1} \equiv 32 \pmod{13^2}$ and $b_2 \equiv (13^2)^{-1} \equiv 30 \pmod{37}$.

Motivation

Frobenius graphs

6-valent FFCs and EJ networks

Rotational circulants

FFCs of valency 2p or $2p^2$

Cyclotomic graphs

Example

Let $n = 6253 = 13^2 \times 37$, so that $p_1 = 13$, $p_2 = 37$, and $D = \gcd(12, 36) = 12$.

Choose $\eta_1 = \eta_2 = 2$, which is a primitive root mod 13 as well as a primitive root mod 37.

We have $b_1 \equiv 37^{-1} \equiv 32 \pmod{13^2}$ and $b_2 \equiv (13^2)^{-1} \equiv 30 \pmod{37}$.

Motivation

Frobenius graphs

6-valent FFCs and EJ networks

Rotational circulants

FFCs of valency 2p or $2p^2$

Cyclotomic graphs

Example

Let $n = 6253 = 13^2 \times 37$, so that $p_1 = 13$, $p_2 = 37$, and $D = \gcd(12, 36) = 12$.

Choose $\eta_1 = \eta_2 = 2$, which is a primitive root mod 13 as well as a primitive root mod 37.

We have $b_1 \equiv 37^{-1} \equiv 32 \pmod{13^2}$ and $b_2 \equiv (13^2)^{-1} \equiv 30 \pmod{37}$.

Motivation

Frobeniu: graphs

6-valent FFCs and EJ networks

Rotational circulants

FFCs of valency 2p or $2p^2$

Cyclotomic graphs

d	(m_1, m_2)	(h_1, h_2)	h
2			-[1]
4	(1, 1)	(99, 31)	-[746]
4	(1, 3)	(99, 6)	-[2436]
6	(1, 1)	(147, 27)	-[1712]
6	(5, 5)	(147, 11)	-[1543]
12	(1, 1)	(80, 8)	-[2286]
12	(1, 5)	(80, 23)	-[1272]
12	(1, 7)	(80, 29)	-[2117]
12	(1, 11)	(80, 14)	+[3122]

Table: All rotational first-kind Frobenius circulants with kernel \mathbb{Z}_{6253}

Rotational FFCs

Motivation

Frobenius graphs

6-valent FFCs and EJ networks

Rotational circulants

FFCs of valency 2p or 2p²

Cyclotomic graphs

Theorem

(Thomson and Zhou 2014)

We know exactly when a FFC can be embedded on a closed orientable surface as a balanced regular Cayley map.

Theorem

(Conder and Tucker 2012+) Regular Cayley maps for the cyclic group of every possible order are classified.

2p-valent FFCs

Motivation

Frobenius graphs

6-valent FFCs and EJ networks

Rotational circulants

FFCs of valency 2p or $2p^2$

Cyclotomic graphs

Theorem

(Zhou 2014)

Let p be an odd prime and $n \ge 2p + 1$.

A 2p-valent circulant C(n, S) with $[1] \in S$ is a FFC with cyclic kernel if and only if

$$n \equiv 1 \mod 2p$$

and

$$S = \langle [a] \rangle$$

for some a such that $a^p + 1 \equiv 0 \mod n$ and $a^i \pm 1, 1 \leq i \leq p - 1$ are all coprime to n.

In this case $C(n, \langle [a] \rangle)$ is a $\mathbb{Z}_n . \langle [a] \rangle$ -arc transitive first-kind $\mathbb{Z}_n . \langle [a] \rangle$ -Frobenius circulant.

$2p^2$ -valent FFCs

Motivation

Frobeniu: graphs

6-valent FFCs and EJ networks

Rotational circulants

FFCs of valency 2p or $2p^2$

Cyclotomi graphs

Theorem (Zhou 2014) All 2p²-valent FFCs are classified, for all primes p.

Motivation

Frobenius graphs

6-valent FFCs and EJ networks

Rotational circulants

FFCs of valency 2p o 2p²

Cyclotomic graphs

• ζ_m : primitive *m*th root of unity, e.g. $\zeta_m = e^{2\pi i/m}$, $m \ge 2$

• $\mathbb{Q}(\zeta_m)$: corresponding cyclotomic field

- $\mathbf{Z}[\zeta_m] = \{a_0 + a_1\zeta_m + \ldots + a_{m-1}\zeta_m^{m-1} : a_i \in \mathbb{Z}\}$
- $\mathbb{Z}[\zeta_m]$ is the ring of algebraic integers in $\mathbb{Q}(\zeta_m)$

Definition

Le $A \neq \{0\}$ an ideal of $\mathbb{Z}[\zeta_m]$. Denote

 $E_m/A := \{\pm(\zeta_m^i + A) : 0 \leqslant i \leqslant m - 1\}.$

Call

$$G_m(A) := \operatorname{Cay}(\mathbb{Z}[\zeta_m]/A, E_m/A)$$

the *m*th cyclotomic graph w.r.t. A.

Motivation

Frobenius graphs

6-valent FFCs and EJ networks

Rotational circulants

FFCs of valency 2p or 2p²

Cyclotomic graphs

- ζ_m : primitive *m*th root of unity, e.g. $\zeta_m = e^{2\pi i/m}$, $m \ge 2$
- $\mathbb{Q}(\zeta_m)$: corresponding cyclotomic field
 - $\mathbb{Z}[\zeta_m] = \{a_0 + a_1\zeta_m + \ldots + a_{m-1}\zeta_m^{m-1} : a_i \in \mathbb{Z}\}$ $\mathbb{Z}[\zeta_m] \text{ is the ring of algebraic integers in } \mathbb{Q}(\zeta_m)$

Definition

Le $A \neq \{0\}$ an ideal of $\mathbb{Z}[\zeta_m]$. Denote

 $E_m/A := \{\pm(\zeta_m^i + A) : 0 \leqslant i \leqslant m - 1\}.$

Call

$$G_m(A) := \operatorname{Cay}(\mathbb{Z}[\zeta_m]/A, E_m/A)$$

the mth cyclotomic graph w.r.t. A.

Motivation

Frobenius graphs

6-valent FFCs and EJ networks

Rotational circulants

FFCs of valency 2p or 2p²

Cyclotomic graphs

ζ_m: primitive mth root of unity, e.g. ζ_m = e^{2πi/m}, m ≥ 2
Q(ζ_m): corresponding cyclotomic field
Z[ζ_m] = {a₀ + a₁ζ_m + ... + a_{m-1}ζ_m^{m-1} : a_i ∈ Z}

 $\mathbb{Z}[\zeta_m]$ is the ring of algebraic integers in $\mathbb{Q}(\zeta_m)$

Definitior

Le $A \neq \{0\}$ an ideal of $\mathbb{Z}[\zeta_m]$. Denote

 $E_m/A := \{\pm (\zeta_m^i + A) : 0 \leq i \leq m - 1\}.$

Call

$$G_m(A) := \operatorname{Cay}(\mathbb{Z}[\zeta_m]/A, E_m/A)$$

the mth cyclotomic graph w.r.t. A.

Motivation

Frobenius graphs

6-valent FFCs and EJ networks

Rotational circulants

FFCs of valency 2p o 2p²

Cyclotomic graphs

- ζ_m : primitive *m*th root of unity, e.g. $\zeta_m = e^{2\pi i/m}$, $m \ge 2$
- $\mathbb{Q}(\zeta_m)$: corresponding cyclotomic field

•
$$\mathbb{Z}[\zeta_m] = \{a_0 + a_1\zeta_m + \ldots + a_{m-1}\zeta_m^{m-1} : a_i \in \mathbb{Z}\}$$

• $\mathbb{Z}[\zeta_m]$ is the ring of algebraic integers in $\mathbb{Q}(\zeta_m)$

Definition

Le $A \neq \{0\}$ an ideal of $\mathbb{Z}[\zeta_m]$. Denote

 $E_m/A := \{\pm(\zeta_m^i + A) : 0 \leq i \leq m-1\}.$

Call

$$G_m(A) := \operatorname{Cay}(\mathbb{Z}[\zeta_m]/A, E_m/A)$$

the *m*th cyclotomic graph w.r.t. A.

Motivation

Frobenius graphs

6-valent FFCs and EJ networks

Rotational circulants

FFCs of valency 2p o 2p²

Cyclotomic graphs

- ζ_m : primitive *m*th root of unity, e.g. $\zeta_m = e^{2\pi i/m}$, $m \ge 2$
- $\mathbb{Q}(\zeta_m)$: corresponding cyclotomic field

•
$$\mathbb{Z}[\zeta_m] = \{a_0 + a_1\zeta_m + \ldots + a_{m-1}\zeta_m^{m-1} : a_i \in \mathbb{Z}\}$$

• $\mathbb{Z}[\zeta_m]$ is the ring of algebraic integers in $\mathbb{Q}(\zeta_m)$

Definition Le $A \neq \{0\}$ an ideal of $\mathbb{Z}[\zeta_m]$. Denote

$$E_m/A := \{\pm (\zeta_m^i + A) : 0 \leq i \leq m-1\}.$$

Call

$$G_m(A) := \mathsf{Cay}(\mathbb{Z}[\zeta_m]/A, E_m/A)$$

the *m*th cyclotomic graph w.r.t. A.

Motivation

Frobenius graphs

6-valent FFCs and EJ networks

Rotational circulants

FFCs of valency 2p o 2p²

Cyclotomic graphs

- ζ_m : primitive *m*th root of unity, e.g. $\zeta_m = e^{2\pi i/m}$, $m \ge 2$
- $\mathbb{Q}(\zeta_m)$: corresponding cyclotomic field

•
$$\mathbb{Z}[\zeta_m] = \{a_0 + a_1\zeta_m + \ldots + a_{m-1}\zeta_m^{m-1} : a_i \in \mathbb{Z}\}$$

• $\mathbb{Z}[\zeta_m]$ is the ring of algebraic integers in $\mathbb{Q}(\zeta_m)$

Definition Le $A \neq \{0\}$ an ideal of $\mathbb{Z}[\zeta_m]$. Denote

$$E_m/A := \{\pm (\zeta_m^i + A) : 0 \leq i \leq m-1\}.$$

Call

$$G_m(A) := \operatorname{Cay}(\mathbb{Z}[\zeta_m]/A, E_m/A)$$

the *m*th cyclotomic graph w.r.t. A.

Two special cases

Motivation

Frobenius graphs

6-valent FFCs and EJ networks

Rotational circulants

FFCs of valency 2p of 2p²

Cyclotomic graphs

Example

Consider m = 2 and $\zeta_2 = i$.

 $\mathbb{Z}[i]$ is an Euclidean domain and so all ideals are principal ideals (α) .

$G_2((\alpha))$ is called a **Gaussian network**.

Example

```
Consider m = 3 and \zeta_3 = \rho = (1 + \sqrt{3}i)/2
```

 $\mathbb{Z}[\rho]$ is also Euclidean.

 $G_3((\alpha)) = EJ_{\alpha}$ is an EJ network.

There are precisely 29 cyclotomic fields $\mathbb{Q}(\zeta_m)$ such that $\mathbb{Z}[\zeta_m]$ is a principal ideal domain.

Two special cases

Motivation

Frobenius graphs

6-valent FFCs and EJ networks

Rotational circulants

FFCs of valency 2p of 2p²

Cyclotomic graphs

Example

Consider m = 2 and $\zeta_2 = i$.

 $\mathbb{Z}[i]$ is an Euclidean domain and so all ideals are principal ideals (α) .

 $G_2((\alpha))$ is called a **Gaussian network**.

Example

Consider m = 3 and $\zeta_3 = \rho = (1 + \sqrt{3}i)/2$.

 $\mathbb{Z}[\rho]$ is also Euclidean.

 $G_3((\alpha)) = EJ_{\alpha}$ is an EJ network.

There are precisely 29 cyclotomic fields $\mathbb{Q}(\zeta_m)$ such that $\mathbb{Z}[\zeta_m]$ is a principal ideal domain.

Two special cases

Motivation

Frobenius graphs

6-valent FFCs and EJ networks

Rotational circulants

FFCs of valency 2p or 2p²

Cyclotomic graphs

Example

Consider m = 2 and $\zeta_2 = i$.

 $\mathbb{Z}[i]$ is an Euclidean domain and so all ideals are principal ideals (α) .

 $G_2((\alpha))$ is called a **Gaussian network**.

Example

Consider m = 3 and $\zeta_3 = \rho = (1 + \sqrt{3}i)/2$.

 $\mathbb{Z}[\rho]$ is also Euclidean.

 $G_3((\alpha)) = EJ_\alpha$ is an EJ network.

There are precisely 29 cyclotomic fields $\mathbb{Q}(\zeta_m)$ such that $\mathbb{Z}[\zeta_m]$ is a principal ideal domain.

Motivation

Frobenius graphs

6-valent FFCs and EJ networks

Rotational circulants

FFCs of valency 2p or $2p^2$

- N(A): norm of A, i.e. the size of Z[ζ_m]/A (finite by number theory)
- $N(\alpha) = N_{\mathbb{Q}(\zeta_m)/\mathbb{Q}}(\alpha)$: norm of $\alpha \in \mathbb{Q}(\zeta_m)$
- $N(\alpha) \ge 0$ is an integer for $\alpha \in \mathbb{Z}[\zeta_m]$
- $N(\alpha) = N((\alpha))$ for $\alpha \in \mathbb{Z}[\zeta_m]$

Motivation

Frobenius graphs

6-valent FFCs and EJ networks

Rotational circulants

FFCs of valency 2p or 2p²

- N(A): norm of A, i.e. the size of Z[ζ_m]/A (finite by number theory)
- $N(\alpha) = N_{\mathbb{Q}(\zeta_m)/\mathbb{Q}}(\alpha)$: norm of $\alpha \in \mathbb{Q}(\zeta_m)$
- $N(\alpha) \ge 0$ is an integer for $\alpha \in \mathbb{Z}[\zeta_m]$
- $N(\alpha) = N((\alpha))$ for $\alpha \in \mathbb{Z}[\zeta_m]$

Motivation

Frobenius graphs

6-valent FFCs and EJ networks

Rotational circulants

FFCs of valency 2p or 2p²

- N(A): norm of A, i.e. the size of Z[ζ_m]/A (finite by number theory)
- $N(\alpha) = N_{\mathbb{Q}(\zeta_m)/\mathbb{Q}}(\alpha)$: norm of $\alpha \in \mathbb{Q}(\zeta_m)$
- $N(\alpha) \ge 0$ is an integer for $\alpha \in \mathbb{Z}[\zeta_m]$
- $N(\alpha) = N((\alpha))$ for $\alpha \in \mathbb{Z}[\zeta_m]$

Motivation

Frobenius graphs

6-valent FFCs and EJ networks

Rotational circulants

FFCs of valency 2p or 2p²

- N(A): norm of A, i.e. the size of Z[ζ_m]/A (finite by number theory)
- $N(\alpha) = N_{\mathbb{Q}(\zeta_m)/\mathbb{Q}}(\alpha)$: norm of $\alpha \in \mathbb{Q}(\zeta_m)$
- $N(\alpha) \ge 0$ is an integer for $\alpha \in \mathbb{Z}[\zeta_m]$
- $N(\alpha) = N((\alpha))$ for $\alpha \in \mathbb{Z}[\zeta_m]$

Motivation

Frobenius graphs

6-valent FFCs and EJ networks

Rotational circulants

FFCs of valency 2p of $2p^2$

Cyclotomic graphs

Theorem (Zhou 2014)

(a) $G_m(A)$ is finite, connected, undirected with order N(A)and valency $|E_m/A| \leq 2m$;

b) $G_m(A)$ has valency 2m iff $1 \pm \zeta_m^i \notin A$ for $1 \le i \le m - 1$; in particular, if $N(\alpha) \ge 3$ for every $\alpha \in A$, then $G_m(A)$ has valency 2m;

Motivation

Frobenius graphs

6-valent FFCs and EJ networks

Rotational circulants

FFCs of valency 2p or $2p^2$

Cyclotomic graphs

Theorem (Zhou 2014)

- (a) $G_m(A)$ is finite, connected, undirected with order N(A)and valency $|E_m/A| \leq 2m$;
- (b) $G_m(A)$ has valency 2m iff $1 \pm \zeta_m^i \notin A$ for $1 \le i \le m 1$; in particular, if $N(\alpha) \ge 3$ for every $\alpha \in A$, then $G_m(A)$ has valency 2m;

Motivation

Frobenius graphs

6-valent FFC and EJ networks

Rotational circulants

FFCs of valency 2p or 2p²

Cyclotomic graphs

Theorem (cont'd)

(c) if $G_m(A)$ has valency 2m, letting

$$H_A := \{ (-\zeta_m)^i + A : 0 \leq i \leq 2m - 1 \},\$$

then $(\mathbb{Z}[\zeta_m]/A).H_A$ is isomorphic to a subgroup of $\operatorname{Aut}(G_m(A))$ and is transitive on the vertex set of $G_m(A)$; moreover, if m is odd, then $(\mathbb{Z}[\zeta_m]/A).H_A$ is arc-transitive on $G_m(A)$, and if m is even, then $(\mathbb{Z}[\zeta_m]/A).H_A$ is edge-transitive but not arc-transitive on $G_m(A)$;

(d) if $G_m(A)$ has valency 2m, then it is rotational.

Motivation

Frobenius graphs

6-valent FFC and EJ networks

Rotational circulants

FFCs of valency 2p or 2p²

Cyclotomic graphs

Theorem (cont'd)

(c) if $G_m(A)$ has valency 2m, letting

$$H_{\mathcal{A}} := \{ (-\zeta_m)^i + \mathcal{A} : 0 \leq i \leq 2m - 1 \},\$$

then $(\mathbb{Z}[\zeta_m]/A).H_A$ is isomorphic to a subgroup of $\operatorname{Aut}(G_m(A))$ and is transitive on the vertex set of $G_m(A)$; moreover, if m is odd, then $(\mathbb{Z}[\zeta_m]/A).H_A$ is arc-transitive on $G_m(A)$, and if m is even, then $(\mathbb{Z}[\zeta_m]/A).H_A$ is edge-transitive but not arc-transitive on $G_m(A)$;

(d) if $G_m(A)$ has valency 2m, then it is rotational.

Motivation

Frobenius graphs

6-valent FFC and EJ networks

Rotational circulants

FFCs of valency 2p or 2p²

Cyclotomic graphs

Theorem (cont'd)

(c) if $G_m(A)$ has valency 2m, letting

$$H_{\mathcal{A}} := \{(-\zeta_m)^i + \mathcal{A} : 0 \leq i \leq 2m - 1\},\$$

then $(\mathbb{Z}[\zeta_m]/A).H_A$ is isomorphic to a subgroup of $\operatorname{Aut}(G_m(A))$ and is transitive on the vertex set of $G_m(A)$; moreover, if m is odd, then $(\mathbb{Z}[\zeta_m]/A).H_A$ is arc-transitive on $G_m(A)$, and if m is even, then $(\mathbb{Z}[\zeta_m]/A).H_A$ is edge-transitive but not arc-transitive on $G_m(A)$;

(d) if $G_m(A)$ has valency 2m, then it is rotational.

Circulant cyclotomic graphs

notivation

Frobenius graphs

6-valent FFCs and EJ networks

Rotational circulants

FFCs of valency 2p or 2p²

Cyclotomic graphs

Theorem

(Zhou 2014)

Let $m \ge 3$ and $n \ge 5$ be odd positive integers, and let a be an integer with 1 < a < n.

Suppose that $n \equiv 1 \mod 2m$, $a^m + 1 \equiv 0 \mod n$, and $a^i \pm 1$ for $1 \leq i \leq m - 1$ are all coprime to n.

Then $C(n, \langle [a] \rangle)$ is isomorphic to an mth cyclotomic graph of valency 2m.

When is the converse true? (under investigation)

```
Choosing m = p, we obtain:
```

Corollary All 2p-valent FFCs are cyclotomic

Circulant cyclotomic graphs

notivation

Frobenius graphs

6-valent FFCs and EJ networks

Rotational circulants

FFCs of valency 2p or 2p²

Cyclotomic graphs

Theorem

(Zhou 2014)

Let $m \ge 3$ and $n \ge 5$ be odd positive integers, and let a be an integer with 1 < a < n.

Suppose that $n \equiv 1 \mod 2m$, $a^m + 1 \equiv 0 \mod n$, and $a^i \pm 1$ for $1 \leq i \leq m - 1$ are all coprime to n.

Then $C(n, \langle [a] \rangle)$ is isomorphic to an mth cyclotomic graph of valency 2m.

When is the converse true? (under investigation)

```
Choosing m = p, we obtain:
```

Corollary All 2p-valent FFCs are cyclotomic.

Circulant cyclotomic graphs

.....

Frobenius graphs

6-valent FFCs and EJ networks

Rotational circulants

FFCs of valency 2p or 2p²

Cyclotomic graphs

Theorem

(Zhou 2014)

Let $m \ge 3$ and $n \ge 5$ be odd positive integers, and let a be an integer with 1 < a < n.

Suppose that $n \equiv 1 \mod 2m$, $a^m + 1 \equiv 0 \mod n$, and $a^i \pm 1$ for $1 \leq i \leq m - 1$ are all coprime to n.

Then $C(n, \langle [a] \rangle)$ is isomorphic to an mth cyclotomic graph of valency 2m.

When is the converse true? (under investigation)

Choosing m = p, we obtain:

Corollary

All 2p-valent FFCs are cyclotomic.

Motivation

Frobenius graphs

6-valent FFCs and EJ networks

Rotational circulants

FFCs of valency 2p o $2p^2$

Cyclotomic graphs

Let $\alpha = \sum_{i=0}^{m-1} a_i \zeta_m^i \in \mathbb{Z}[\zeta_m]$. Define the Manhattan weight by $|\alpha| := \sum_{i=0}^{m-1} |a_i|.$

For $\bar{\alpha} = \alpha + A$, define the **Mannheim weight** by

$$\|\bar{\alpha}\| := \min\{|\alpha - \delta| : \delta \in A\}$$

Lemma

(Zhou 2014)

(a) $\bar{\alpha}$ and $\bar{\beta}$ are adjacent in $G_m(A)$ iff $\|\bar{\alpha} - \bar{\beta}\| = 1;$

b) In general, the distance in $G_m(A)$ between $\bar{\alpha}$ and $\bar{\beta}$ is equal to $\|\bar{\alpha} - \bar{\beta}\|$.

Motivation

Frobenius graphs

6-valent FFCs and EJ networks

Rotational circulants

FFCs of valency 2p o $2p^2$

Cyclotomic graphs

Let $\alpha = \sum_{i=0}^{m-1} a_i \zeta_m^i \in \mathbb{Z}[\zeta_m]$. Define the Manhattan weight by $|\alpha| := \sum_{i=0}^{m-1} |a_i|.$

For $\bar{\alpha} = \alpha + A$, define the **Mannheim weight** by

$$\|\bar{\alpha}\| := \min\{|\alpha - \delta| : \delta \in A\}$$

Lemma (Zhou 2014)
(a) ᾱ and β̄ are adjacent in G_m(A) iff ||ᾱ - β̄|| = 1;
(b) In general, the distance in G_m(A) between ᾱ and β̄ is equal to ||ᾱ - β̄||.

Motivation

Frobenius graphs

6-valent FFCs and EJ networks

Rotational circulants

FFCs of valency 2p o 2p²

Cyclotomic graphs

Let $\alpha = \sum_{i=0}^{m-1} a_i \zeta_m^i \in \mathbb{Z}[\zeta_m]$. Define the Manhattan weight by $|\alpha| := \sum_{i=0}^{m-1} |a_i|.$

For $\bar{\alpha} = \alpha + A$, define the **Mannheim weight** by

$$\|\bar{\alpha}\| := \min\{|\alpha - \delta| : \delta \in A\}$$

Lemma (Zhou 2014)
(a) ᾱ and β̄ are adjacent in G_m(A) iff ||ᾱ - β̄|| = 1;
(b) In general, the distance in G_m(A) between ᾱ and β̄ is equal to ||ᾱ - β̄||.

Motivation

Frobenius graphs

6-valent FFCs and EJ networks

Rotational circulants

FFCs of valency 2p o 2p²

Cyclotomic graphs

Let $\alpha = \sum_{i=0}^{m-1} a_i \zeta_m^i \in \mathbb{Z}[\zeta_m]$. Define the Manhattan weight by $|\alpha| := \sum_{i=0}^{m-1} |a_i|.$

For $\bar{\alpha} = \alpha + A$, define the **Mannheim weight** by

$$\|\bar{\alpha}\| := \min\{|\alpha - \delta| : \delta \in A\}$$

Lemma (Zhou 2014)
(a) ᾱ and β̄ are adjacent in G_m(A) iff ||ᾱ - β̄|| = 1;
(b) In general, the distance in G_m(A) between ᾱ and β̄ is equal to ||ᾱ - β̄||.

Motivation

Frobenius graphs

6-valent FFCs and EJ networks

Rotational circulants

FFCs of valency 2p or 2p²

Cyclotomic graphs

Other results on cyclotomic graphs

- Hamilton decomposability of $G_m((\alpha))$ when $N(\alpha)$ is a prime
- Necessary and sufficient condition for D/A to be a perfect t-dominating set (equivalently a perfect t-error correcting group code of length one), where D is an ideal of Z[ζ_m] with A ⊆ D
- In particular, improvements of some known results on perfect *t*-dominating sets in Gaussian and EJ networs
- Quotients of cyclotomic graphs and covers

Motivation

Frobeniu graphs

6-valent FFCs and EJ networks

Rotational circulants

FFCs of valency 2p or $2p^2$

Cyclotomic graphs

thank you