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Degree/diameter problem

De�nition

The degree/diameter problem is the problem of �nding the largest
possible graph with given diameter d and given maximum degree k .
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Moore bound

• natural upper bound on number of vertices of graph with
diameter d and maximum degree k

M(k , d) =

{
1 + k

(k−1)d−1
k−2

, if k > 2,

2d + 1, if k = 2,

• graphs with diameter 2 : M(k , 2) = k2 + 1.
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Moore graphs

• attain Moore bound ⇒ answer to degree/diameter problem

• (Ho�man, Singleton 1960)
• if d = 2 Moore graphs exist for k = 2, 3, 7 and possibly 57
• if d = 3 unique Moore graph for k = 2 (heptagon)

• (Damerell 1973, Bannai and Ito 1973) no Moore graphs for
d ≥ 3 and k ≥ 3
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Graphs where |V (G )| = Moore bound −1

• small number of nontrivial Moore graphs ⇒ investigation of
graphs where |V (G )| = Moore bound −1

• (Erdös, Fajtlowicz, Ho�man 1980) if d = 2 unique graph for
k = 2 (C4)

• (Kurosawa and Tsujii 1981, Bannai and Ito 1981)
• if k = 2 only such graphs are C2d

• no graphs for k ≥ 3
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Methods (Ho�man, Singleton 1960)

Moore graphs with diameter 2

• matrix equation for adjacency matrix A

A2 + A− (k − 1)I = J

where
• I - identity matrix
• J - all-ones matrix

• analysis of eigenvalues and eigenvectors of A

⇓

• k = 2, 3, 7 and possibly 57
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Methods (Erdös, Fajtlowicz, Ho�man 1980)

Graphs where |V (G )| = Moore bound −1
• matrix equation for adjacency matrix A

A2 + A− (k − 1)I = J + K ,

where K is matrix of 1-factor, which we get as direct sum of
matrices 2× 2 (

0 1
1 0

)
• analysis of eigenvalues of A

⇓

• C4 or k = 12

• analysis of eigenvalues of A3

⇓

• only C4
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Strongly regular graphs

De�nition

Graph G is strongly regular with parameters (n, k , a, c) if:

• it has n vertices

• it is k-regular graph

• every two adjacent vertices have a common neighbours

• every two non-adjacent vertices have c common neighbours
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Strongly regular graphs

De�nition

Graph G is strongly regular with parameters (n, k , a, c) if:

• it has n vertices

• it is k-regular graph

• every two adjacent vertices have a common neighbours

• every two non-adjacent vertices have c common neighbours

• Moore graphs with diameter 2 are strongly regular graphs
(n, k , 0, 1)
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Strongly regular graphs

• Adjacency matrix A of graph satis�es equation:

A2 + (c − a)A + (c − k)I = cJ,

where
• I - identity matrix
• J - all-ones matrix
• A - adjacency matrix of graph

• methods of Ho�man and Singleton

⇓

Integral criterion (multiplicities of eigenvalues have to be integral)
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Generalization of Moore graphs

Moore graphs, i.e. strongly regular graphs with (n, k , 0, 1)

A2 + A− (k − 1)I = J

⇓

strongly regular graphs (n, k , a, c)

A2 + (c − a)A + (c − k)I = cJ
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Graphs similar to strongly regular graphs

Erd®s, Fajtlowicz and Ho�man

A2 + A− (k − 1)I = J + K ,

where K is matrix of 1-factor

⇓

Generalization towards strongly regular graphs (we are trying to
�nd graphs satisfying equation):

A2 + (c − a)A + (c − k)I = cJ + K
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Basic properties

• interesting combinatorial interpretation of our graphs with
parameters (n, k , a, c)

• k-regular graph on n vertices
• for each vertex v there exists unique vertex, denoted as sv ,

such that

• if v is adjacent with sv then v and sv have a+ 1 common

neighbours
• if v is not adjacent with sv then v and sv have c + 1 common

neighbours
• all other vertices, which are neighbours or non-neighbours of v

have with vertex v a or c common neighbours respectively

• closed under complement (if graph G is similar to SRG then
complement Ḡ is also similar to SRG)

• parity of ka globally determines whether v is adjacent with sv
or not
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Examples

• perfect matchings (corresponding with matrix K )

• complements of perfect matchings (Kn − K )

⇓

imprimitive graphs (all other graphs are primitive)
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Eigenvalues of A

A2 + (c − a)A + (c − k)I = cJ + K

from this equation and the spectrum of 1-factor K (it has
eigenvalues {−1, 1})

⇓

�ve eigenvalues of A

• k

• λ1, λ2 corresponding to 1, which is eigenvalue of K

• θ1, θ2 corresponding to -1, which is eigenvalue of K
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Necessary conditions for parameters (n, k, a, c)

�ve equations:

• one from the eigenvalues corresponding to all-ones vector

• two from the spectrum of 1-factor

• one from the trace of A

• one from the trace of A3
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Necessary conditions for parameters (n, k, a, c)

k2 + (c − a)k + c − k − cn − 1 = 0

m1 + m2 −
n

2
+ 1 = 0

n1 + n2 −
n

2
= 0

k +
a − c

2
(n − 1) +

u1

2
(m1 −m2) +

u2

2
(n1 − n2) = 0

k3 + m1λ
3
1 + m2λ

3
2 + n1θ

3
1 + n2θ

3
2 − akn − st(KA) = 0

where m1, m2, n1, n2 are multiplicities of eigenvalues of A
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Simpli�cation of necessary conditions

0 = k2 + (c − a)k + c − k − cn − 1

x1u1 = tr(KA)− 2k + (c − a)(
n

2
− 1)

x2u2 = −tr(KA) + (c − a)
n

2

where

• x1 = m1 −m2 is di�erence of multiplicities of eigenvalues λ1,
λ2

• x2 = n1 − n2 is di�erence of multiplicities of eigenvalues θ1, θ2

• u1 and u2 depend only on n, k , a, c

• tr(KA) = 0 (up to complement)
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Analysis of multiplicities of eigenvalues

4 cases:

1 x1 = 0, x2 = 0

2 x1 6= 0, x2 6= 0

3 x1 = 0, x2 6= 0

4 x1 6= 0, x2 = 0

where

• x1 = 0 ⇔ m1 = m2

• x2 = 0 ⇔ n1 = n2
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4 cases:

1 x1 = 0, x2 = 0 ⇒ no graphs

2 x1 6= 0, x2 6= 0 ⇒ imprimitive graphs

3 x1 = 0, x2 6= 0 ⇒ no graphs

4 x1 6= 0, x2 = 0 ⇒ in�nite class of parameters

where

• x1 = 0 ⇔ m1 = m2

• x2 = 0 ⇔ n1 = n2
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Case x1 6= 0, x2 = 0

Transformation of necessary conditions to integral parameters
(z ,w , y) such that

n = z2(y + 2)

k = z2 + wz

a = wz + 1

c = wz + 1,

where

z is even

w is odd

y is even
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Case x1 6= 0, x2 = 0

Transformation of necessary conditions to integral parameters
(z ,w , y) such that

n = z2(y + 2)

k = z2 + wz

a = c = wz + 1

c = a = wz + 1,

where

z is even

w is odd

y is even

Modi�ed necessary conditions:

y(1 + wz) = w2 + z2 − 3
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Basic solutions

y(1 + wz) = w2 + z2 − 3

• triple (z ,w , y) is a solution i� triple (yz − w , z , y) is

• method of descent

⇓

set of solutions {(w3 − 3w ,w ,w2 − 3)|w ≥ 2}
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z w y a = c k n

18 3 6 55 378 2592
52 4 13 209 2912 40560
110 5 22 551 12650 290400
198 6 33 1189 40392 1372140
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Advanced solutions

• set of solutions {(w3 − 3w ,w ,w2 − 3)|w ≥ 2}
• triple (z ,w , y) is a solution i� triple (yz − w , z , y) is

⇓

each triple from the set of basic solutions generates in�nite class of
triples

⇓

complete set of solutions (up to complements)
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z w y a = c k n

18 3 6 55 378 2592
105 18 6 1891 12915 88200
612 105 6 64261 438804 2996352
3567 612 6 2183005 14906493 101787912
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Conclusion

• systemic application of trace of the third power of adjacency
matrix A

• combinatorial consequences of parity of term ka

• methods of number theory

⇓
• complete classi�cation of feasible parameters

• existence of primitive graphs remains an open problem
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Thank you for your attention
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Combinatorial properties

Combinatorial properties of such graph with parameters (n, k , a, c)
is

• it has n vertices

• k-regular

• for each vertex v there exists unique vertex, denoted as sv ,
such that

• if v is incident with sv then v and sv have a + 1 common
neighbours

• if v is not incident with sv then v and sv have c + 1 common
neighbours

• all other vertices, which are neighbours or non-neighbours of v
have with vertex v a or c common neighbours respectively
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