Graphs similar to strongly regular graphs

Katarína Tureková

Joint work with Martin Mačaj

3rd July 2014

Katarína Tureková Graphs similar to strongly regular graphs

Definition

The degree/diameter problem is the problem of finding the largest possible graph with given diameter d and given maximum degree k.

 natural upper bound on number of vertices of graph with diameter d and maximum degree k

$$M(k,d) = \begin{cases} 1 + k \frac{(k-1)^d - 1}{k-2}, & \text{if } k > 2, \\ 2d + 1, & \text{if } k = 2, \end{cases}$$

• graphs with diameter 2 : $M(k,2) = k^2 + 1$.

• attain Moore bound \Rightarrow answer to degree/diameter problem

Moore graphs

- attain Moore bound ⇒ answer to degree/diameter problem
- (Hoffman, Singleton 1960)
 - if d = 2 Moore graphs exist for k = 2, 3, 7 and possibly 57
 - if d = 3 unique Moore graph for k = 2 (heptagon)
- (Damerell 1973, Bannai and Ito 1973) no Moore graphs for *d* ≥ 3 and *k* ≥ 3

 small number of nontrivial Moore graphs ⇒ investigation of graphs where |V(G)| = Moore bound -1

- small number of nontrivial Moore graphs ⇒ investigation of graphs where |V(G)| = Moore bound -1
- (Erdös, Fajtlowicz, Hoffman 1980) if d = 2 unique graph for k = 2 (C_4)
- (Kurosawa and Tsujii 1981, Bannai and Ito 1981)
 - if k = 2 only such graphs are C_{2d}
 - no graphs for $k \ge 3$

Methods (Hoffman, Singleton 1960)

Moore graphs with diameter 2

• matrix equation for adjacency matrix A

$$A^2 + A - (k-1)I = J$$

- I identity matrix
- J all-ones matrix
- analysis of eigenvalues and eigenvectors of A

Methods (Hoffman, Singleton 1960)

Moore graphs with diameter 2

• matrix equation for adjacency matrix A

$$A^2 + A - (k-1)I = J$$

∜

where

- 1 identity matrix
- J all-ones matrix
- analysis of eigenvalues and eigenvectors of A

• k = 2, 3, 7 and possibly 57

Methods (Erdös, Fajtlowicz, Hoffman 1980)

Graphs where |V(G)| = Moore bound -1

• matrix equation for adjacency matrix A

$$A^{2} + A - (k - 1)I = J + K,$$

where ${\it K}$ is matrix of 1-factor, which we get as direct sum of matrices 2×2

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

analysis of eigenvalues of A

Methods (Erdös, Fajtlowicz, Hoffman 1980)

Graphs where |V(G)| = Moore bound -1

• matrix equation for adjacency matrix A

$$A^{2} + A - (k - 1)I = J + K,$$

where ${\it K}$ is matrix of 1-factor, which we get as direct sum of matrices 2×2

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

• analysis of eigenvalues of A

• C_4 or k = 12

Methods (Erdös, Fajtlowicz, Hoffman 1980)

Graphs where |V(G)| = Moore bound -1

• matrix equation for adjacency matrix A

$$A^{2} + A - (k - 1)I = J + K,$$

where ${\cal K}$ is matrix of 1-factor, which we get as direct sum of matrices 2×2

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

analysis of eigenvalues of A

∜

- C_4 or k = 12
- analysis of eigenvalues of A³

∜

• only C_4

Strongly regular graphs

Definition

Graph G is strongly regular with parameters (n, k, a, c) if:

- it has n vertices
- it is *k*-regular graph
- every two adjacent vertices have a common neighbours
- every two non-adjacent vertices have c common neighbours

Katarína Tureková

Graphs similar to strongly regular graphs

Definition

Graph G is strongly regular with parameters (n, k, a, c) if:

- it has *n* vertices
- it is *k*-regular graph
- every two adjacent vertices have a common neighbours
- every two non-adjacent vertices have c common neighbours
- Moore graphs with diameter 2 are strongly regular graphs (n, k, 0, 1)

Strongly regular graphs

Definition

Graph G is strongly regular with parameters (n, k, a, c) if:

- it has n vertices
- it is *k*-regular graph
- every two adjacent vertices have a common neighbours
- every two non-adjacent vertices have c common neighbours

Katarína Tureková

Graphs similar to strongly regular graphs

Strongly regular graphs

Definition

Graph G is strongly regular with parameters (n, k, a, c) if:

- it has *n* vertices
- it is *k*-regular graph
- every two adjacent vertices have a common neighbours
- every two non-adjacent vertices have c common neighbours

• Adjacency matrix A of graph satisfies equation:

$$A^2 + (c-a)A + (c-k)I = cJ,$$

where

- 1 identity matrix
- J all-ones matrix
- A adjacency matrix of graph
- methods of Hoffman and Singleton

₩

Integral criterion (multiplicities of eigenvalues have to be integral)

Moore graphs, i.e. strongly regular graphs with (n, k, 0, 1)

$$A^2 + A - (k - 1)I = J$$

strongly regular graphs (n, k, a, c)

$$A^2 + (c - a)A + (c - k)I = cJ$$

Erdős, Fajtlowicz and Hoffman

$$A^{2} + A - (k - 1)I = J + K$$
,

where K is matrix of 1-factor

₩

Generalization towards strongly regular graphs (we are trying to find graphs satisfying equation):

$$A^2 + (c - a)A + (c - k)I = cJ + K$$

- interesting combinatorial interpretation of our graphs with parameters (n, k, a, c)
 - *k*-regular graph on *n* vertices
 - for each vertex v there exists unique vertex, denoted as $s_v, \,$ such that
 - if v is adjacent with s_v then v and s_v have a + 1 common neighbours
 - if v is not adjacent with s_v then v and s_v have c+1 common neighbours
 - all other vertices, which are neighbours or non-neighbours of v have with vertex v a or c common neighbours respectively
- closed under complement (if graph G is similar to SRG then complement \overline{G} is also similar to SRG)
- parity of ka globally determines whether v is adjacent with s_v or not

- perfect matchings (corresponding with matrix K)
- complements of perfect matchings $(K_n K)$

₩

imprimitive graphs (all other graphs are primitive)

$$A^2 + (c - a)A + (c - k)I = cJ + K$$

from this equation and the spectrum of 1-factor K (it has eigenvalues $\{-1,1\})$

₩

five eigenvalues of A

- k
- $\lambda_1, \ \lambda_2$ corresponding to 1, which is eigenvalue of K
- $heta_1$, $heta_2$ corresponding to -1, which is eigenvalue of K

five equations:

- one from the eigenvalues corresponding to all-ones vector
- two from the spectrum of 1-factor
- one from the trace of A
- one from the trace of A^3

Necessary conditions for parameters (n, k, a, c)

$$k^{2} + (c - a)k + c - k - cn - 1 = 0$$

$$m_{1} + m_{2} - \frac{n}{2} + 1 = 0$$

$$n_{1} + n_{2} - \frac{n}{2} = 0$$

$$k + \frac{a - c}{2}(n - 1) + \frac{u_{1}}{2}(m_{1} - m_{2}) + \frac{u_{2}}{2}(n_{1} - n_{2}) = 0$$

$$k^{3} + m_{1}\lambda_{1}^{3} + m_{2}\lambda_{2}^{3} + n_{1}\theta_{1}^{3} + n_{2}\theta_{2}^{3} - akn - st(KA) = 0$$

where m_1 , m_2 , n_1 , n_2 are multiplicities of eigenvalues of A

Simplification of necessary conditions

$$0 = k^{2} + (c - a)k + c - k - cn - 1$$

$$x_{1}u_{1} = tr(KA) - 2k + (c - a)(\frac{n}{2} - 1)$$

$$x_{2}u_{2} = -tr(KA) + (c - a)\frac{n}{2}$$

- $x_1=m_1-m_2$ is difference of multiplicities of eigenvalues λ_1 , λ_2
- $x_2 = n_1 n_2$ is difference of multiplicities of eigenvalues $heta_1$, $heta_2$
- u_1 and u_2 depend only on n, k, a, c
- tr(KA) = 0 (up to complement)

4 cases:

1 $x_1 = 0, x_2 = 0$ **2** $x_1 \neq 0, x_2 \neq 0$ **3** $x_1 = 0, x_2 \neq 0$ **4** $x_1 \neq 0, x_2 = 0$

- $x_1 = 0 \Leftrightarrow m_1 = m_2$
- $x_2 = 0 \Leftrightarrow n_1 = n_2$

4 cases:

1 $x_1 = 0, x_2 = 0 \Rightarrow \text{ no graphs}$ **2** $x_1 \neq 0, x_2 \neq 0$ **3** $x_1 = 0, x_2 \neq 0$ **4** $x_1 \neq 0, x_2 = 0$

- $x_1 = 0 \Leftrightarrow m_1 = m_2$
- $x_2 = 0 \Leftrightarrow n_1 = n_2$

4 cases:

1
$$x_1 = 0, x_2 = 0 \Rightarrow \text{ no graphs}$$

2 $x_1 \neq 0, x_2 \neq 0 \Rightarrow \text{ imprimitive graphs}$
3 $x_1 = 0, x_2 \neq 0$
4 $x_1 \neq 0, x_2 = 0$

- $x_1 = 0 \Leftrightarrow m_1 = m_2$
- $x_2 = 0 \Leftrightarrow n_1 = n_2$

4 cases:

1
$$x_1 = 0, x_2 = 0 \Rightarrow \text{ no graphs}$$

2 $x_1 \neq 0, x_2 \neq 0 \Rightarrow \text{ imprimitive graphs}$
3 $x_1 = 0, x_2 \neq 0 \Rightarrow \text{ no graphs}$
4 $x_1 \neq 0, x_2 = 0$

- $x_1 = 0 \Leftrightarrow m_1 = m_2$
- $x_2 = 0 \Leftrightarrow n_1 = n_2$

4 cases:

$$1 x_1 = 0, x_2 = 0 \Rightarrow \text{no graphs}$$

2
$$x_1
eq 0$$
, $x_2
eq 0 \Rightarrow$ imprimitive graphs

$${f 3}$$
 $x_1={f 0}$, $x_2
eq {f 0}$ \Rightarrow no graphs

4
$$x_1
eq 0$$
, $x_2 = 0 \Rightarrow$ infinite class of parameters

•
$$x_1 = 0 \Leftrightarrow m_1 = m_2$$

•
$$x_2 = 0 \Leftrightarrow n_1 = n_2$$

Transformation of necessary conditions to integral parameters (z, w, y) such that

n	=	$z^{2}(y+2)$
k	=	$z^2 + wz$
а	=	wz + 1
с	=	wz + 1,

where

z is even w is odd y is even Transformation of necessary conditions to integral parameters (z, w, y) such that

n	=	$z^{2}(y+2)$
k	=	$z^2 + wz$
а	=	c = wz + 1
с	=	a = wz + 1,

where

z is evenw is oddy is even

Case $x_1 \neq 0$, $x_2 = 0$

Transformation of necessary conditions to integral parameters (z, w, y) such that

п	=	$z^{2}(y+2)$
k	=	$z^2 + wz$
а	=	c = wz + 1
с	=	a = wz + 1,

where

Ζ	is even		
w	is odd		
у	is even		

Modified necessary conditions:

$$y(1+wz)=w^2+z^2-3$$

Katarína Tureková Graphs similar to strongly regular graphs

$$y(1+wz)=w^2+z^2-3$$

- triple (z, w, y) is a solution iff triple (yz w, z, y) is
- method of descent

∜

set of solutions
$$\{(w^3 - 3w, w, w^2 - 3)|w \ge 2\}$$

Ζ	W	у	a = c	k	п
18	3	6	55	378	2592
52	4	13	209	2912	40560
110	5	22	551	12650	290400
198	6	33	1189	40392	1372140

Advanced solutions

- set of solutions $\{(w^3 3w, w, w^2 3) | w \ge 2\}$
- triple (z, w, y) is a solution iff triple (yz w, z, y) is

Advanced solutions

- set of solutions $\{(w^3 3w, w, w^2 3) | w \ge 2\}$
- triple (z, w, y) is a solution iff triple (yz w, z, y) is

₩

each triple from the set of basic solutions generates infinite class of triples

Advanced solutions

- set of solutions $\{(w^3 3w, w, w^2 3)|w \ge 2\}$
- triple (z, w, y) is a solution iff triple (yz w, z, y) is

each triple from the set of basic solutions generates infinite class of triples

1

∜

complete set of solutions (up to complements)

Ζ	W	у	a = c	k	п
18	3	6	55	378	2592
105	18	6	1891	12915	88200
612	105	6	64261	438804	2996352
3567	612	6	2183005	14906493	101787912

• systemic application of trace of the third power of adjacency matrix A

∜

- combinatorial consequences of parity of term ka
- methods of number theory
- complete classification of feasible parameters
- existence of primitive graphs remains an open problem

Thank you for your attention

Katarína Tureková Graphs similar to strongly regular graphs

Combinatorial properties of such graph with parameters (n, k, a, c) is

- it has *n* vertices
- *k*-regular
- for each vertex v there exists unique vertex, denoted as $s_{\nu},$ such that
 - if v is incident with s_v then v and s_v have a + 1 common neighbours
 - if v is not incident with s_v then v and s_v have c+1 common neighbours
 - all other vertices, which are neighbours or non-neighbours of v have with vertex v a or c common neighbours respectively

