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The mixed Moore bound for diameter two

In a (regular) mixed (∆, d)-graph, every vertex is incident with ∆ ≥ 1
undirected edges and there are d ≥ 1 darts from and to each vertex.

The order of such a graph of diam 2 is ≤ (∆ + d)2 + d + 1 = M2(∆, d),
generalizing the undirected and directed Moore bounds for diameter 2.

Bosák [1979]

If a mixed Moore (∆, d)-graph of diameter 2 exists, then there is a divisor
t of (4d− 3)(4d + 5) such that ∆ = (t2 + 3)/4.

Our interest is in large Cayley mixed (∆, d)-graphs of diam 2. Motivation:

• Directed Cayley graphs of diam 2 and defect 1 exist for ∞ degrees;

• Undirected diam-2 Moore bound can be approached by Cayley graphs;

• Computer generation of record-large examples uses Cayley graphs.
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Directed graphs with d ≥ 2

M2(0, d) = d2 + d + 1; impossible if d ≥ 2 (e.g. Bridges, Toueg 1980).

Kautz digraphs L( ~Kn): d = n−1, diam 2, order M2(0, d)−1 = d2+d.

By a deep result of Gimbert [2001], they are unique if d ≥ 3; v-trans.

Definition: A Cayley digraph ~C(H,D) for a group H and a generating set
D 63 id, has vertex set H, dart set (h, hx) for h ∈ H, x ∈ D; deg d=|D|.

Combining Brunat, Espona, Fiol, Serra [1995] with Zassenhaus [1936]:

The Kautz digraph L( ~Kn) is a Cayley digraph iff n is a prime power;
isomorphic to a Cayley digraph ~C(H,D) for H = AGL(1, F ) ∼= F+ o F ∗

and D = {(ax + b, x);x ∈ F ∗} for any a, b ∈ F such that a + b 6= 0.
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Jana Šiagiová Slovak University of Technology BratislavaMixed Cayley graphs of diameter two of order asymptotically approaching the Moore bound



Directed graphs with d ≥ 2

M2(0, d) = d2 + d + 1; impossible if d ≥ 2 (e.g. Bridges, Toueg 1980).

Kautz digraphs L( ~Kn): d = n−1, diam 2, order M2(0, d)−1 = d2+d.

By a deep result of Gimbert [2001], they are unique if d ≥ 3; v-trans.

Definition: A Cayley digraph ~C(H,D) for a group H and a generating set
D 63 id, has vertex set H, dart set (h, hx) for h ∈ H, x ∈ D; deg d=|D|.

Combining Brunat, Espona, Fiol, Serra [1995] with Zassenhaus [1936]:

The Kautz digraph L( ~Kn) is a Cayley digraph iff n is a prime power;
isomorphic to a Cayley digraph ~C(H,D) for H = AGL(1, F ) ∼= F+ o F ∗

and D = {(ax + b, x);x ∈ F ∗} for any a, b ∈ F such that a + b 6= 0.
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Undirected graphs with ∆ ≥ 3

M2(∆, 0) = ∆2 + 1; v-trans non-Cayley if ∆ ∈ {3, 7}. ∆ = 57:
In doubt but, by Higman [1960’s] not v-trans (hence non-Cayley).

Current best result on large Cayley graphs of diam 2: :

Š, Širáň [2012]

For every n ≥ 1 there exists a group Hn of order |Hn| = 22n(22n − 1)
and a symmetric generating set Un of size ∆n = 22n + 2n+2 − 6 in Hn

such that the (undirected) Cayley graph C(Hn, Un) has diameter 2.

Since |Hn| = 22n(22n − 1) > ∆2
n − 8∆

3/2
n , we have |Hn|/M2(∆n, 0)→ 1.

In this sense our Cayley graphs asymptotically approach the Moore bound.

Here, Hn = AGL(1, F ) ∼= F+ o F ∗ for a Galois field F of order 22n.

The ‘majority’ of Un is formed by the set {(x, x2); x ∈ F ∗}.
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Š, Širáň [2012]

For every n ≥ 1 there exists a group Hn of order |Hn| = 22n(22n − 1)
and a symmetric generating set Un of size ∆n = 22n + 2n+2 − 6 in Hn

such that the (undirected) Cayley graph C(Hn, Un) has diameter 2.

Since |Hn| = 22n(22n − 1) > ∆2
n − 8∆

3/2
n , we have |Hn|/M2(∆n, 0)→ 1.

In this sense our Cayley graphs asymptotically approach the Moore bound.

Here, Hn = AGL(1, F ) ∼= F+ o F ∗ for a Galois field F of order 22n.

The ‘majority’ of Un is formed by the set {(x, x2); x ∈ F ∗}.
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Mixed Cayley graphs of diameter two

Let H be a group and let X, Y be disjoint unit-free subsets of H with
X = X−1. The mixed Cayley graph C(H;X,Y ) has vertex set H; for
every vertex h ∈ H there is an undirected edge joining h with hx for
every x ∈ X and a directed edge from h to hy for every y ∈ Y . It is
(∆, d)-regular for ∆=|X|, d=|Y |; undirected if Y =∅, directed if X=∅.

Example: Take F = GF (pe) and the group H = AGL(1, F ) = F+ o F ∗,

Y = {(ax+b, x); x ∈ F ∗\(−1)p}, X = {(a(−1)p+b, (−1)p)}, a+b 6= 0.

Then, C(H;X,Y ) is the Cayley mixed Moore graph obtained from the
Kautz digraph L( ~Kn), n = pe, by suppressing digons.

Note: This replacement works for all n, but we focus on the Cayley case.
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Results for mixed Cayley graphs of diameter two

Approaching the mixed Moore bound for diam 2 by mixed Cayley graphs:

Theorem 1

For every c such that 0 ≤ c ≤ +∞ there exists an infinite sequence of
mixed (∆n, dn)-regular Cayley graphs Gn of diameter 2 such that
|Gn|/M2(∆n, dn)→ 1 and ∆n/dn → c as n→∞.

Proof (by ‘cheating’): Replace ≈ 1/(1 + c) undirected edges in the current
best construction of Cayley graphs of degree ∆n and diameter 2 by digons!

Instead, one may replace ‘a few’ darts by edges:

If Gn = ~C(Hn, Dn) are Cayley digraphs of diameter 2 and degree kn
with |Gn|/k2n → 1 as n→∞, take Un ⊂ Dn such that |Un| = o(kn).

Letting Xn = Un ∪ U−1n , Yn = Dn\Un, with |Xn| = ∆n and |Yn| = dn,
and considering the mixed Cayley graphs G′n = C(Hn, Xn, Yn) of diam 2
we still have |G′n|/(∆n + dn)2 → 1 as n→∞.
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with |Gn|/k2n → 1 as n→∞, take Un ⊂ Dn such that |Un| = o(kn).

Letting Xn = Un ∪ U−1n , Yn = Dn\Un, with |Xn| = ∆n and |Yn| = dn,
and considering the mixed Cayley graphs G′n = C(Hn, Xn, Yn) of diam 2
we still have |G′n|/(∆n + dn)2 → 1 as n→∞.
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Results for mixed Cayley graphs of diameter two

Proper strengthenings of Theorem 1 should be concerned with simple and
irredundant mixed Cayley graphs (with no digons and in which removal of
any generator increases the diameter). This appears to be much harder.

Theorem 2

There is an infinite sequence of simple and irredundant mixed
(∆n, dn)-regular Cayley graphs Gn of diameter 2 such that 4dn/∆2

n → 1
and |Gn|/M2(∆n, dn)→ 1 as n→∞.

Proof: Finite fields, affine groups and very particular generating sets.

A full extension of Theorem 2 to simple and irredundant mixed Cayley
graphs remains open – lack of suitable generating sets for Cayley graphs
and digraphs approaching the Moore bound for diameter 2.
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The end

THANK YOU
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