Mixed Cayley graphs of diameter two of order asymptotically approaching the Moore bound

Jana Šiagiová

Slovak University of Technology

Bratislava
The mixed Moore bound for diameter two

In a (regular) mixed \((\Delta, d)\)-graph, every vertex is incident with \(\Delta \geq 1\) undirected edges and there are \(d \geq 1\) darts from and to each vertex.

The order of such a graph of diameter \(2\) is \(\leq (\Delta + d)^2 + d + 1\), generalizing the undirected and directed Moore bounds for diameter \(2\).

Bosák [1979] If a mixed Moore \((\Delta, d)\)-graph of diameter \(2\) exists, then there is a divisor \(t\) of \((4d - 3)(4d + 5)\) such that \(\Delta = (t^2 + 3)/4\).

Our interest is in large Cayley mixed \((\Delta, d)\)-graphs of diameter \(2\).

Motivation:

• Directed Cayley graphs of diameter \(2\) and defect \(1\) exist for \(\infty\) degrees;
• Undirected diameter-\(2\) Moore bound can be approached by Cayley graphs;
• Computer generation of record-large examples uses Cayley graphs.
The mixed Moore bound for diameter two

In a (regular) mixed (Δ, d)-graph, every vertex is incident with $\Delta \geq 1$ undirected edges and there are $d \geq 1$ darts from and to each vertex.
The mixed Moore bound for diameter two

In a (regular) mixed (Δ, d)-graph, every vertex is incident with $\Delta \geq 1$ undirected edges and there are $d \geq 1$ darts from and to each vertex.

The order of such a graph of diam 2 is $\leq (\Delta + d)^2 + d + 1$
The mixed Moore bound for diameter two

In a (regular) mixed \((\Delta, d)\)-graph, every vertex is incident with \(\Delta \geq 1\) undirected edges and there are \(d \geq 1\) darts from and to each vertex.

The order of such a graph of diam 2 is \(\leq (\Delta + d)^2 + d + 1 = M_2(\Delta, d)\),

Bosákov

If a mixed Moore \((\Delta, d)\)-graph of diameter 2 exists, then there is a divisor \(t\) of \((4d - 3)(4d + 5)\) such that \(\Delta = \left(\frac{t^2 + 3}{4}\right)\).

Our interest is in large Cayley mixed \((\Delta, d)\)-graphs of diam 2.

Motivation:

• Directed Cayley graphs of diam 2 and defect 1 exist for \(\infty\) degrees;
• Undirected diam-2 Moore bound can be approached by Cayley graphs;
• Computer generation of record-large examples uses Cayley graphs.

Jana Šiagiová Slovak University of Technology

Mixed Cayley graphs of diameter two of order asymptotically approaching the Moore bound
The mixed Moore bound for diameter two

In a (regular) mixed \((\Delta, d)\)-graph, every vertex is incident with \(\Delta \geq 1\) undirected edges and there are \(d \geq 1\) darts from and to each vertex.

The order of such a graph of diam 2 is \(\leq (\Delta + d)^2 + d + 1 = M_2(\Delta, d)\), generalizing the undirected and directed Moore bounds for diameter 2.
In a (regular) mixed \((\Delta, d)\)-graph, every vertex is incident with \(\Delta \geq 1\) undirected edges and there are \(d \geq 1\) darts from and to each vertex.

The order of such a graph of diam \(2\) is \(\leq (\Delta + d)^2 + d + 1 = M_2(\Delta, d)\), generalizing the undirected and directed Moore bounds for diameter \(2\).

Bosák [1979]

If a mixed Moore \((\Delta, d)\)-graph of diameter \(2\) exists, then there is a divisor \(t\) of \((4d - 3)(4d + 5)\) such that \(\Delta = (t^2 + 3)/4\).
The mixed Moore bound for diameter two

In a (regular) mixed \((\Delta, d)\)-graph, every vertex is incident with \(\Delta \geq 1\) undirected edges and there are \(d \geq 1\) darts from and to each vertex.

The order of such a graph of diam 2 is \(\leq (\Delta + d)^2 + d + 1 = M_2(\Delta, d)\), generalizing the undirected and directed Moore bounds for diameter 2.

Bosák [1979]

If a mixed Moore \((\Delta, d)\)-graph of diameter 2 exists, then there is a divisor \(t\) of \((4d - 3)(4d + 5)\) such that \(\Delta = (t^2 + 3)/4\).

Our interest is in large Cayley mixed \((\Delta, d)\)-graphs of diam 2.
The mixed Moore bound for diameter two

In a (regular) mixed \((\Delta, d)\)-graph, every vertex is incident with \(\Delta \geq 1\) undirected edges and there are \(d \geq 1\) darts from and to each vertex.

The order of such a graph of diam 2 is \(\leq (\Delta + d)^2 + d + 1 = M_2(\Delta, d)\), generalizing the undirected and directed Moore bounds for diameter 2.

Bosák [1979]

If a mixed Moore \((\Delta, d)\)-graph of diameter 2 exists, then there is a divisor \(t\) of \((4d - 3)(4d + 5)\) such that \(\Delta = (t^2 + 3)/4\).

Our interest is in large Cayley mixed \((\Delta, d)\)-graphs of diam 2. Motivation:
The mixed Moore bound for diameter two

In a (regular) mixed \((\Delta, d)\)-graph, every vertex is incident with \(\Delta \geq 1\) undirected edges and there are \(d \geq 1\) darts from and to each vertex.

The order of such a graph of diam 2 is \(\leq (\Delta + d)^2 + d + 1 = M_2(\Delta, d)\), generalizing the undirected and directed Moore bounds for diameter 2.

Bosák [1979]

If a mixed Moore \((\Delta, d)\)-graph of diameter 2 exists, then there is a divisor \(t\) of \((4d - 3)(4d + 5)\) such that \(\Delta = (t^2 + 3)/4\).

Our interest is in large Cayley mixed \((\Delta, d)\)-graphs of diam 2. Motivation:
- Directed Cayley graphs of diam 2 and defect 1 exist for \(\infty\) degrees;
The mixed Moore bound for diameter two

In a (regular) mixed \((\Delta, d)\)-graph, every vertex is incident with \(\Delta \geq 1\) undirected edges and there are \(d \geq 1\) darts from and to each vertex.

The order of such a graph of diam 2 is \(\leq (\Delta + d)^2 + d + 1 = M_2(\Delta, d)\), generalizing the undirected and directed Moore bounds for diameter 2.

Bosák [1979]

If a mixed Moore \((\Delta, d)\)-graph of diameter 2 exists, then there is a divisor \(t\) of \((4d - 3)(4d + 5)\) such that \(\Delta = (t^2 + 3)/4\).

Our interest is in large Cayley mixed \((\Delta, d)\)-graphs of diam 2. Motivation:

- Directed Cayley graphs of diam 2 and defect 1 exist for \(\infty\) degrees;
- Undirected diam-2 Moore bound can be approached by Cayley graphs;
The mixed Moore bound for diameter two

In a (regular) mixed \((\Delta, d)\)-graph, every vertex is incident with \(\Delta \geq 1\) undirected edges and there are \(d \geq 1\) darts from and to each vertex.

The order of such a graph of diam 2 is \(\leq (\Delta + d)^2 + d + 1 = M_2(\Delta, d)\), generalizing the undirected and directed Moore bounds for diameter 2.

Bosák [1979]

If a mixed Moore \((\Delta, d)\)-graph of diameter 2 exists, then there is a divisor \(t\) of \((4d - 3)(4d + 5)\) such that \(\Delta = (t^2 + 3)/4\).

Our interest is in large Cayley mixed \((\Delta, d)\)-graphs of diam 2. Motivation:

- Directed Cayley graphs of diam 2 and defect 1 exist for \(\infty\) degrees;
- Undirected diam-2 Moore bound can be approached by Cayley graphs;
- Computer generation of record-large examples uses Cayley graphs.
Directed graphs with $d \geq 2$

$M_2(0, d) = d^2 + d + 1$; impossible if $d \geq 2$ (e.g. Bridges, Toueg 1980).

Kautz digraphs $L(\vec{K}_n)$:

$d = n - 1$, diam ≥ 2, order $M_2(0, d) - 1 = d^2 + d$.

By a deep result of Gimbert [2001], they are unique if $d \geq 3$;

Definition: A Cayley digraph $\vec{C}(H, D)$ for a group H and a generating set $D \neq \{id\}$, has vertex set H, dart set (h, hx) for $h \in H$, $x \in D$;

$\deg_d = |D|$.

The Kautz digraph $L(\vec{K}_n)$ is a Cayley digraph iff n is a prime power;

isomorphic to a Cayley digraph $\vec{C}(H, D)$ for $H = AGL(1, F) \cong F + \cdot F^*$ and $D = \{(ax + b, x); x \in F^* \}$ for any $a, b \in F$ such that $a + b \neq 0$.

Jana Šiagiová Slovak University of Technology
Directed graphs with \(d \geq 2 \)

\[
M_2(0, d) = d^2 + d + 1;
\]
Directed graphs with \(d \geq 2 \)

\[M_2(0, d) = d^2 + d + 1; \text{ impossible if } d \geq 2 \] (e.g. Bridges, Toueg 1980).
Directed graphs with $d \geq 2$

$M_2(0, d) = d^2 + d + 1$; impossible if $d \geq 2$ (e.g. Bridges, Toueg 1980).

Kautz digraphs $L(\vec{K}_n)$: $d = n-1$, diam 2, order $M_2(0, d) - 1 = d^2 + d$.
Directed graphs with \(d \geq 2 \)

\[M_2(0, d) = d^2 + d + 1; \text{ impossible if } d \geq 2 \] (e.g. Bridges, Toueg 1980).

Kautz digraphs \(L(\vec{K}_n) \): \(d = n - 1 \), diam 2, order \(M_2(0, d) - 1 = d^2 + d \).

By a deep result of Gimbert [2001], they are unique if \(d \geq 3 \);
Directed graphs with $d \geq 2$

$M_2(0, d) = d^2 + d + 1$; impossible if $d \geq 2$ (e.g. Bridges, Toueg 1980).

Kautz digraphs $L(\vec{K}_n)$: $d = n-1$, diam 2, order $M_2(0, d) - 1 = d^2 + d$.

By a deep result of Gimbert [2001], they are unique if $d \geq 3$; v-trans.
Directed graphs with $d \geq 2$

$M_2(0, d) = d^2 + d + 1$; *impossible if $d \geq 2* (e.g. Bridges, Toueg 1980).

Kautz digraphs $L(\vec{K}_n)$: $d = n-1$, diam 2, order $M_2(0, d) - 1 = d^2 + d$.

By a deep result of Gimbert [2001], they are *unique* if $d \geq 3$; v-trans.

Definition: A Cayley digraph $\tilde{C}(H, D)$ for a group H and a generating set $D \not\ni id$, has vertex set H, dart set (h, hx) for $h \in H$, $x \in D$;
Directed graphs with $d \geq 2$

$M_2(0, d) = d^2 + d + 1$; impossible if $d \geq 2$ (e.g. Bridges, Toueg 1980).

Kautz digraphs $L(\vec{K}_n)$: $d = n-1$, diam 2, order $M_2(0, d) - 1 = d^2 + d$.

By a deep result of Gimbert [2001], they are unique if $d \geq 3$; v-trans.

Definition: A Cayley digraph $\tilde{C}(H, D)$ for a group H and a generating set $D \not\ni id$, has vertex set H, dart set (h, hx) for $h \in H$, $x \in D$; deg $d = |D|$.
Directed graphs with $d \geq 2$

$M_2(0, d) = d^2 + d + 1$; impossible if $d \geq 2$ (e.g. Bridges, Toueg 1980).

Kautz digraphs $L(\vec{K}_n)$: $d = n-1$, diam 2, order $M_2(0, d) - 1 = d^2 + d$.

By a deep result of Gimbert [2001], they are unique if $d \geq 3$; v-trans.

Definition: A Cayley digraph $\tilde{C}(H, D)$ for a group H and a generating set $D \not= id$, has vertex set H, dart set (h, hx) for $h \in H$, $x \in D$; deg $d = |D|$.

Jana Šiagiová Slovak University of Technology Mixed Cayley graphs of diameter two of order asymptotically approaching the Moore bound
Directed graphs with $d \geq 2$

$M_2(0, d) = d^2 + d + 1$; impossible if $d \geq 2$ (e.g. Bridges, Toueg 1980).

Kautz digraphs $L(\vec{K}_n)$: $d = n-1$, diam 2, order $M_2(0, d) - 1 = d^2 + d$.

By a deep result of Gimbert [2001], they are unique if $d \geq 3$; v-trans.

Definition: A Cayley digraph $\vec{C}(H, D)$ for a group H and a generating set $D \not= id$, has vertex set H, dart set (h, hx) for $h \in H$, $x \in D$; $\deg d = |D|$.

The Kautz digraph $L(\vec{K}_n)$ is a Cayley digraph iff n is a prime power;
Directed graphs with $d \geq 2$

$M_2(0,d) = d^2 + d + 1$; impossible if $d \geq 2$ (e.g. Bridges, Toueg 1980).

Kautz digraphs $L(\vec{K}_n)$: $d = n-1$, diam 2, order $M_2(0,d)-1 = d^2+d$.

By a deep result of Gimbert [2001], they are unique if $d \geq 3$; v-trans.

Definition: A Cayley digraph $\vec{C}(H, D)$ for a group H and a generating set $D \not\ni id$, has vertex set H, dart set (h, hx) for $h \in H$, $x \in D$; $\deg d = |D|$.

The Kautz digraph $L(\vec{K}_n)$ is a Cayley digraph iff n is a prime power; isomorphic to a Cayley digraph $\vec{C}(H, D)$ for $H = AGL(1, F) \cong F^+ \rtimes F^*$
Directed graphs with $d \geq 2$

$M_2(0, d) = d^2 + d + 1$; impossible if $d \geq 2$ (e.g. Bridges, Toueg 1980).

Kautz digraphs $L(\vec{K}_n)$: $d = n-1$, diam 2, order $M_2(0, d) - 1 = d^2 + d$.

By a deep result of Gimbert [2001], they are unique if $d \geq 3$; v-trans.

Definition: A Cayley digraph $\vec{C}(H, D)$ for a group H and a generating set $D \not\ni id$, has vertex set H, dart set (h, hx) for $h \in H$, $x \in D$; deg $d = |D|$.

The Kautz digraph $L(\vec{K}_n)$ is a Cayley digraph iff n is a prime power; isomorphic to a Cayley digraph $\vec{C}(H, D)$ for $H = AGL(1, F) \cong F^+ \rtimes F^*$ and $D = \{(ax + b, x); x \in F^*\}$ for any $a, b \in F$ such that $a + b \neq 0$.

Jana Šiagiová Slovak University of Technology

Mixed Cayley graphs of diameter two of order asymptotically approaching the Moore bound
Undirected graphs with $\Delta \geq 3$

In doubt but, by Higman [1960's] not v-trans (hence non-Cayley).

Current best result on large Cayley graphs of diam 2:

ˇS, ˇSir´ aˇ n [2012]

For every $n \geq 1$ there exists a group H_n of order $|H_n| = 2^{2^n - 1}$ and a symmetric generating set U_n of size $\Delta_n = 2^{2^n} + 2^n + 2 - 6$ in H_n such that the (undirected) Cayley graph $C(H_n, U_n)$ has diameter 2.

Since $|H_n| > \Delta_n - 8\Delta_n / 2^n$, we have $|H_n|/M_2(\Delta_n, 0) \to 1$.

In this sense our Cayley graphs asymptotically approach the Moore bound.

Here, $H_n = AGL(1, F) \sim = F + \cdot F^*$ for a Galois field F of order 2^{2^n}.

The 'majority' of U_n is formed by the set $\{(x, x^2) ; x \in F^*\}$.
Undirected graphs with $\Delta \geq 3$

$M_2(\Delta, 0) = \Delta^2 + 1$;

In doubt but, by Higman [1960's] not v-trans (hence non-Cayley).

Current best result on large Cayley graphs of diam 2:

ˇS, ˇSirán [2012]

For every $n \geq 1$ there exists a group H_n of order

$|H_n| = 2^{2n}(2^{2n} - 1)$

and a symmetric generating set U_n of size

$\Delta_n = 2^{2n} + 2^n + 2 - 6$

in H_n such that the (undirected) Cayley graph $C(H_n, U_n)$ has diameter 2.

Since $|H_n| > \Delta_n^2 - 8\Delta_n^3/2$, we have

$|H_n|/M_2(\Delta_n, 0) \to 1$.

In this sense our Cayley graphs asymptotically approach the Moore bound.

Here, $H_n = AGL(1, F) \cong F^+ \rtimes F^*$ for a Galois field F of order 2^{2n}.

The ‘majority’ of U_n is formed by the set

$\{(x, x^2); x \in F^*\}$.
Undirected graphs with $\Delta \geq 3$

$M_2(\Delta, 0) = \Delta^2 + 1$; v-trans non-Cayley if $\Delta \in \{3, 7\}$.
Undirected graphs with $\Delta \geq 3$

$M_2(\Delta, 0) = \Delta^2 + 1$; v-trans non-Cayley if $\Delta \in \{3, 7\}$. $\Delta = 57$:

Since $|H_n| > \Delta^2 n - 8\Delta^3/2$ we have $|H_n|/M_2(\Delta_n, 0) \to 1$. In this sense our Cayley graphs asymptotically approach the Moore bound.

Here, $H_n = AGL(1, F) = F^+ \rtimes F^*$ for a Galois field F of order 2^{2n}.

The 'majority' of U_n is formed by the set $\{(x, x^2); x \in F^*\}$. Mixed Cayley graphs of diameter two of order asymptotically approaching the Moore bound
Undirected graphs with $\Delta \geq 3$

$M_2(\Delta, 0) = \Delta^2 + 1$; v-trans non-Cayley if $\Delta \in \{3, 7\}$. $\Delta = 57$: In doubt but, by Higman [1960’s] not v-trans (hence non-Cayley).
Undirected graphs with $\Delta \geq 3$

$M_2(\Delta, 0) = \Delta^2 + 1$; v-trans non-Cayley if $\Delta \in \{3, 7\}$. $\Delta = 57$:
In doubt but, by Higman [1960’s] not v-trans (hence non-Cayley).

Current best result on large Cayley graphs of diam 2:

Since $|H_n| > \Delta 2^n - 8\Delta 3/2^n$, we have $|H_n|/M_2(\Delta_n, 0) \to 1$.

In this sense our Cayley graphs asymptotically approach the Moore bound.

Here, $H_n = AGL(1, F) \cong F^* \rtimes F^*$ for a Galois field F of order 2^{2n}.

The ‘majority’ of U_n is formed by the set $\{(x, x^2); x \in F^*\}$.

Jana Šiagiová
Slovak University of Technology
Undirected graphs with $\Delta \geq 3$

$M_2(\Delta, 0) = \Delta^2 + 1$; v-trans non-Cayley if $\Delta \in \{3, 7\}$. $\Delta = 57$: In doubt but, by Higman [1960’s] not v-trans (hence non-Cayley).

Current best result on large Cayley graphs of diam 2: :

Š, Širáň [2012]

For every $n \geq 1$ there exists a group H_n of order $|H_n| = 2^{2n}(2^{2n} - 1)$ and a symmetric generating set U_n of size $\Delta_n = 2^{2n} + 2^{n+2} - 6$ in H_n such that the (undirected) Cayley graph $C(H_n, U_n)$ has diameter 2.
Undirected graphs with $\Delta \geq 3$

$M_2(\Delta, 0) = \Delta^2 + 1$; v-trans non-Cayley if $\Delta \in \{3, 7\}$. $\Delta = 57$:
In doubt but, by Higman [1960’s] not v-trans (hence non-Cayley).

Current best result on large Cayley graphs of diam 2: :

Š, Širáň [2012]

For every $n \geq 1$ there exists a group H_n of order $|H_n| = 2^{2n}(2^{2n} - 1)$ and a symmetric generating set U_n of size $\Delta_n = 2^{2n} + 2^{n+2} - 6$ in H_n such that the (undirected) Cayley graph $C(H_n, U_n)$ has diameter 2.

Since $|H_n| = 2^{2n}(2^{2n} - 1) > \Delta_n^2 - 8\Delta_n^{3/2}$, we have $|H_n|/M_2(\Delta_n, 0) \to 1$.

Mixed Cayley graphs of diameter two of order asymptotically approaching the Moore bound
Undirected graphs with $\Delta \geq 3$

$M_2(\Delta, 0) = \Delta^2 + 1$; v-trans non-Cayley if $\Delta \in \{3, 7\}$. $\Delta = 57$: In doubt but, by Higman [1960’s] not v-trans (hence non-Cayley).

Current best result on large Cayley graphs of diam 2: :

Š, Širáň [2012]

For every $n \geq 1$ there exists a group H_n of order $|H_n| = 2^{2n}(2^{2n} - 1)$ and a symmetric generating set U_n of size $\Delta_n = 2^{2n} + 2^{n+2} - 6$ in H_n such that the (undirected) Cayley graph $C(H_n, U_n)$ has diameter 2.

Since $|H_n| = 2^{2n}(2^{2n} - 1) > \Delta_n^2 - 8\Delta_n^{3/2}$, we have $|H_n|/M_2(\Delta_n, 0) \to 1$.

In this sense our Cayley graphs asymptotically approach the Moore bound.
Undirected graphs with $\Delta \geq 3$

$M_2(\Delta, 0) = \Delta^2 + 1$; v-trans non-Cayley if $\Delta \in \{3, 7\}$. $\Delta = 57$:
In doubt but, by Higman [1960’s] not v-trans (hence non-Cayley).

Current best result on large Cayley graphs of diam 2:

$\hat{\text{S}}, \hat{\text{S}}\text{iráň} [2012]$

For every $n \geq 1$ there exists a group H_n of order $|H_n| = 2^{2n}(2^{2n} - 1)$
and a symmetric generating set U_n of size $\Delta_n = 2^{2n} + 2^{n+2} - 6$ in H_n
such that the (undirected) Cayley graph $C(H_n, U_n)$ has diameter 2.

Since $|H_n| = 2^{2n}(2^{2n} - 1) > \Delta_n^2 - 8\Delta_n^{3/2}$, we have $|H_n|/M_2(\Delta_n, 0) \to 1$.
In this sense our Cayley graphs asymptotically approach the Moore bound.
Here, $H_n = AGL(1, F) \cong F^+ \rtimes F^*$ for a Galois field F of order 2^{2n}.
Undirected graphs with $\Delta \geq 3$

$M_2(\Delta, 0) = \Delta^2 + 1$; v-trans non-Cayley if $\Delta \in \{3, 7\}$. $\Delta = 57$: In doubt but, by Higman [1960’s] not v-trans (hence non-Cayley).

Current best result on large Cayley graphs of diam 2: :

\[\tilde{S}, \tilde{\text{S}ir\text{a}n} \ [2012] \]

For every $n \geq 1$ there exists a group H_n of order $|H_n| = 2^{2n}(2^{2n} - 1)$ and a symmetric generating set U_n of size $\Delta_n = 2^{2n} + 2^{n+2} - 6$ in H_n such that the (undirected) Cayley graph $C(H_n, U_n)$ has diameter 2.

Since $|H_n| = 2^{2n}(2^{2n} - 1) > \Delta_n^2 - 8\Delta_n^{3/2}$, we have $|H_n|/M_2(\Delta_n, 0) \to 1$.

In this sense our Cayley graphs asymptotically approach the Moore bound.

Here, $H_n = AGL(1, F) \cong F^+ \rtimes F^*$ for a Galois field F of order 2^{2n}.

The ‘majority’ of U_n is formed by the set $\{(x, x^2); \ x \in F^*\}$.

Š, Širáň [2012]
Let H be a group and let X, Y be disjoint unit-free subsets of H with $X = X - 1$.

The mixed Cayley graph $C(H; X, Y)$ has vertex set H: for every vertex $h \in H$ there is an undirected edge joining h with hx for every $x \in X$ and a directed edge from h to hy for every $y \in Y$.

It is (Δ, d)-regular for $\Delta = |X|$, $d = |Y|$; undirected if $Y = \emptyset$, directed if $X = \emptyset$.

Example: Take $F = GF(p^e)$ and the group $H = AGL(1, F) = F^+ \rtimes F^*$, $Y = \{ (ax + b, x); x \in F^* \setminus (-1)^p \}$, $X = \{ (a(-1)^p + b, (-1)^p) \}$, $a + b \neq 0$.

Then, $C(H; X, Y)$ is the Cayley mixed Moore graph obtained from the Kautz digraph $L(\vec{K}_n)$, $n = p^e$, by suppressing digons.

Note: This replacement works for all n, but we focus on the Cayley case.
Let H be a group and let X, Y be disjoint unit-free subsets of H with $X = X^{-1}$.

The mixed Cayley graph $C(H; X, Y)$ has vertex set H; for every vertex $h \in H$ there is an undirected edge joining h with hx for every $x \in X$ and a directed edge from h to hy for every $y \in Y$.

It is (Δ, d)-regular for $\Delta = |X|$, $d = |Y|$; undirected if $Y = \emptyset$, directed if $X = \emptyset$.

Example: Take $F = GF(p^e)$ and the group $H = AGL(1, F) = F + \rtimes F^*$, $Y = \{(ax + b, x); x \in F^* \setminus (-1)^p\}$, $X = \{(a(-1)^p + b, (-1)^p); a + b \neq 0\}$.

Then, $C(H; X, Y)$ is the Cayley mixed Moore graph obtained from the Kautz digraph $\vec{L}(\vec{K}^n)$, $n = p^e$, by suppressing digons.

Note: This replacement works for all n, but we focus on the Cayley case.
Let H be a group and let X, Y be disjoint unit-free subsets of H with $X = X^{-1}$. The mixed Cayley graph $C(H; X, Y)$ has vertex set H; for every vertex $h \in H$ there is an undirected edge joining h with hx for every $x \in X$ and a directed edge from h to hy for every $y \in Y$. It is (Δ, d)-regular for $\Delta = |X|$, $d = |Y|$; undirected if $Y = \emptyset$, directed if $X = \emptyset$.

Example: Take $F = GF(p)$ and the group $H = AGL(1, F) = F^+ \rtimes F^*$, $Y = \{(ax + b, x); x \in F^* \setminus (-1)^p\}$, $X = \{(a(-1)^p + b, (-1)^p); a + b \neq 0\}$. Then, $C(H; X, Y)$ is the Cayley mixed Moore graph obtained from the Kautz digraph $L(\vec{K}_n)$, $n = p^e$, by suppressing digons.

Note: This replacement works for all n, but we focus on the Cayley case.
Let H be a group and let X, Y be disjoint unit-free subsets of H with $X = X^{-1}$. The mixed Cayley graph $C(H; X, Y)$ has vertex set H; for every vertex $h \in H$ there is an undirected edge joining h with hx for every $x \in X$ and a directed edge from h to hy for every $y \in Y$. It is (Δ, d)-regular for $\Delta = |X|$, $d = |Y|$;
Let H be a group and let X, Y be disjoint unit-free subsets of H with $X = X^{-1}$. The mixed Cayley graph $C(H; X, Y)$ has vertex set H; for every vertex $h \in H$ there is an undirected edge joining h with hx for every $x \in X$ and a directed edge from h to hy for every $y \in Y$. It is (Δ, d)-regular for $\Delta = |X|$, $d = |Y|$; undirected if $Y = \emptyset$, directed if $X = \emptyset$.

Example: Take $F = \text{GF}(p^e)$ and the group $H = AGL(1, F) = F^+ \rtimes F^*$, $Y = \{(ax + b, x); x \in F^* \setminus (-1)p\}$, $X = \{(a(−1)p + b, (−1)p)\}$, $a + b \neq 0$. Then, $C(H; X, Y)$ is the Cayley mixed Moore graph obtained from the Kautz digraph $L(\vec{K}_n)$, $n = p^e$, by suppressing digons. Note: This replacement works for all n, but we focus on the Cayley case.
Let H be a group and let X, Y be disjoint unit-free subsets of H with $X = X^{-1}$. The *mixed Cayley graph* $C(H; X, Y)$ has vertex set H; for every vertex $h \in H$ there is an undirected edge joining h with hx for every $x \in X$ and a directed edge from h to hy for every $y \in Y$. It is (Δ, d)-regular for $\Delta = |X|$, $d = |Y|$; undirected if $Y = \emptyset$, directed if $X = \emptyset$.

Example:
Let H be a group and let X, Y be disjoint unit-free subsets of H with $X = X^{-1}$. The mixed Cayley graph $C(H; X, Y)$ has vertex set H; for every vertex $h \in H$ there is an undirected edge joining h with hx for every $x \in X$ and a directed edge from h to hy for every $y \in Y$. It is (Δ, d)-regular for $\Delta = |X|$, $d = |Y|$; undirected if $Y = \emptyset$, directed if $X = \emptyset$.

Example: Take $F = GF(p^e)$ and the group $H = AGL(1, F) = F^+ \rtimes F^*$,
Let H be a group and let X, Y be disjoint unit-free subsets of H with $X = X^{-1}$. The mixed Cayley graph $C(H; X, Y)$ has vertex set H; for every vertex $h \in H$ there is an undirected edge joining h with hx for every $x \in X$ and a directed edge from h to hy for every $y \in Y$. It is (Δ, d)-regular for $\Delta = |X|$, $d = |Y|$; undirected if $Y = \emptyset$, directed if $X = \emptyset$.

Example: Take $F = GF(p^e)$ and the group $H = AGL(1, F) = F^+ \rtimes F^*$, $Y = \{(ax+b, x); \ x \in F^* \setminus (-1)^p\}$, $X = \{(a(-1)^p+b, (-1)^p)\}$, $a+b \neq 0$.

Mixed Cayley graphs of diameter two of order asymptotically approaching the Moore bound
Let H be a group and let X, Y be disjoint unit-free subsets of H with $X = X^{-1}$. The mixed Cayley graph $C(H; X, Y)$ has vertex set H; for every vertex $h \in H$ there is an undirected edge joining h with hx for every $x \in X$ and a directed edge from h to hy for every $y \in Y$. It is (Δ, d)-regular for $\Delta = |X|$, $d = |Y|$; undirected if $Y = \emptyset$, directed if $X = \emptyset$.

Example: Take $F = GF(p^e)$ and the group $H = AGL(1, F) = F^+ \rtimes F^*$, $Y = \{(ax+b, x); x \in F^* \setminus (-1)^p\}$, $X = \{(a(-1)^p + b, (-1)^p)\}$, $a+b \neq 0$.

Then, $C(H; X, Y)$ is the Cayley mixed Moore graph obtained from the Kautz digraph $L(K_n^p)$, $n = p^e$, by suppressing digons.
Mixed Cayley graphs of diameter two

Let H be a group and let X, Y be disjoint unit-free subsets of H with $X = X^{-1}$. The mixed Cayley graph $C(H; X, Y)$ has vertex set H; for every vertex $h \in H$ there is an undirected edge joining h with hx for every $x \in X$ and a directed edge from h to hy for every $y \in Y$. It is (Δ, d)-regular for $\Delta = |X|$, $d = |Y|$; undirected if $Y = \emptyset$, directed if $X = \emptyset$.

Example: Take $F = GF(p^e)$ and the group $H = AGL(1, F) = F^+ \rtimes F^*$, $Y = \{(ax+b, x); x \in F^* \setminus (-1)^p\}$, $X = \{(a(-1)^p+b, (-1)^p)\}$, $a+b \neq 0$.

Then, $C(H; X, Y)$ is the Cayley mixed Moore graph obtained from the Kautz digraph $L(\vec{K}_n)$, $n = p^e$, by suppressing digons.

Note: This replacement works for all n, but we focus on the Cayley case.
Results for mixed Cayley graphs of diameter two

Theorem 1
For every \(c \) such that \(0 \leq c \leq \infty \) there exists an infinite sequence of mixed \((\Delta_n, d_n)\)-regular Cayley graphs \(G_n \) of diameter 2 such that
\[
\frac{|G_n|}{M^2(\Delta_n, d_n)} \to 1 \quad \text{and} \quad \frac{\Delta_n}{d_n} \to c \quad \text{as} \quad n \to \infty.
\]

Proof (by 'cheating'): Replace \(\approx \frac{1}{1 + c} \) undirected edges in the current best construction of Cayley graphs of degree \(\Delta_n \) and diameter 2 by digons!

Instead, one may replace 'a few' darts by edges:

If \(G_n = \vec{C}(H_n, D_n) \) are Cayley digraphs of diameter 2 and degree \(k_n \) with \(|G_n|/k_n^2 \to 1 \) as \(n \to \infty \), take \(U_n \subset D_n \) such that \(|U_n| = o(k_n) \).

Letting \(X_n = U_n \cup U_{n-1} \), \(Y_n = D_n \setminus U_n \), with \(|X_n| = \Delta_n \) and \(|Y_n| = d_n \), and considering the mixed Cayley graphs \(G'_n = C(H_n, X_n, Y_n) \) of diam 2 we still have
\[
\frac{|G'_n|}{(\Delta_n + d_n)^2} \to 1 \quad \text{as} \quad n \to \infty.
\]
Results for mixed Cayley graphs of diameter two

Approaching the mixed Moore bound for diam 2 by mixed Cayley graphs:

Theorem 1

For every c such that $0 \leq c \leq \infty$ there exists an infinite sequence of mixed (Δ_n, d_n)-regular Cayley graphs G_n of diameter 2 such that $|G_n|/M_2(\Delta_n, d_n) \to 1$ and $\Delta_n/d_n \to c$ as $n \to \infty$.

Proof (by 'cheating'): Replace $\approx 1/(1 + c)$ undirected edges in the current best construction of Cayley graphs of degree Δ_n and diameter 2 by digons!

Instead, one may replace 'a few' darts by edges:

If $G_n = \vec{C}(H_n, D_n)$ are Cayley digraphs of diameter 2 and degree k_n with $|G_n|/k_n^2 \to 1$ as $n \to \infty$, take $U_n \subset D_n$ such that $|U_n| = o(k_n)$.

Letting $X_n = U_n \cup U_{n-1}$, $Y_n = D_n \setminus U_n$, with $|X_n| = \Delta_n$ and $|Y_n| = d_n$,

we still have $|G'_n|/(\Delta_n + d_n)^2 \to 1$ as $n \to \infty$.
Results for mixed Cayley graphs of diameter two

Approaching the mixed Moore bound for diam 2 by mixed Cayley graphs:

Theorem 1

For every c such that $0 \leq c \leq +\infty$ there exists an infinite sequence of mixed (Δ_n, d_n)-regular Cayley graphs G_n of diameter 2 such that $|G_n|/M_2(\Delta_n, d_n) \to 1$ and $\Delta_n/d_n \to c$ as $n \to \infty$.

Proof (by 'cheating'): Replace $\approx 1/(1 + c)$ undirected edges in the current best construction of Cayley graphs of degree Δ_n and diameter 2 by digons!

Instead, one may replace 'a few' darts by edges:

If $G_n = \vec{C}(H_n, D_n)$ are Cayley digraphs of diameter 2 and degree k_n with $|G_n|/k_n^2 \to 1$ as $n \to \infty$, take $U_n \subset D_n$ such that $|U_n| = o(k_n)$. Letting $X_n = U_n \cup U_{n-1}$, $Y_n = D_n \setminus U_n$, with $|X_n| = \Delta_n$ and $|Y_n| = d_n$, and considering the mixed Cayley graphs $G'_n = C(H_n, X_n, Y_n)$ of diam 2, we still have $|G'_n|/(\Delta_n + d_n)^2 \to 1$ as $n \to \infty$.

Jana Šiagiová Slovak University of Technology

Mixed Cayley graphs of diameter two of order asymptotically approaching the Moore bound
Results for mixed Cayley graphs of diameter two

Approaching the mixed Moore bound for diam 2 by mixed Cayley graphs:

Theorem 1

For every c such that $0 \leq c \leq +\infty$ there exists an infinite sequence of mixed (Δ_n, d_n)-regular Cayley graphs G_n of diameter 2 such that $|G_n|/M_2(\Delta_n, d_n) \rightarrow 1$ and $\Delta_n/d_n \rightarrow c$ as $n \rightarrow \infty$.

Proof (by ‘cheating’): Replace $\approx 1/(1 + c)$ undirected edges in the current best construction of Cayley graphs of degree Δ_n and diameter 2 by digons!
Approaching the mixed Moore bound for diam 2 by mixed Cayley graphs:

Theorem 1

For every \(c \) such that \(0 \leq c \leq +\infty \) there exists an infinite sequence of mixed \((\Delta_n, d_n)\)-regular Cayley graphs \(G_n \) of diameter 2 such that \(|G_n|/M_2(\Delta_n, d_n) \to 1 \) and \(\Delta_n/d_n \to c \) as \(n \to \infty \).

Proof (by ‘cheating’): Replace \(\approx 1/(1 + c) \) undirected edges in the current best construction of Cayley graphs of degree \(\Delta_n \) and diameter 2 by digons!

Instead, one may replace ‘a few’ darts by edges:
Approaching the mixed Moore bound for diam 2 by mixed Cayley graphs:

Theorem 1

For every c such that $0 \leq c \leq +\infty$ there exists an infinite sequence of mixed (Δ_n, d_n)-regular Cayley graphs G_n of diameter 2 such that $|G_n|/M_2(\Delta_n, d_n) \to 1$ and $\Delta_n/d_n \to c$ as $n \to \infty$.

Proof (by ‘cheating’): Replace $\approx 1/(1 + c)$ undirected edges in the current best construction of Cayley graphs of degree Δ_n and diameter 2 by digons!

Instead, one may replace ‘a few’ darts by edges:

If $G_n = \vec{C}(H_n, D_n)$ are Cayley digraphs of diameter 2 and degree k_n with $|G_n|/k_n^2 \to 1$ as $n \to \infty$, take $U_n \subset D_n$ such that $|U_n| = o(k_n)$.
Results for mixed Cayley graphs of diameter two

Approaching the mixed Moore bound for diam 2 by mixed Cayley graphs:

Theorem 1

For every c such that $0 \leq c \leq +\infty$ there exists an infinite sequence of mixed (Δ_n, d_n)-regular Cayley graphs G_n of diameter 2 such that

$|G_n|/M_2(\Delta_n, d_n) \to 1$ and $\Delta_n/d_n \to c$ as $n \to \infty$.

Proof (by ‘cheating’): Replace $\approx 1/(1 + c)$ undirected edges in the current best construction of Cayley graphs of degree Δ_n and diameter 2 by digons!

Instead, one may replace ‘a few’ darts by edges:

If $G_n = \tilde{C}(H_n, D_n)$ are Cayley digraphs of diameter 2 and degree k_n with $|G_n|/k_n^2 \to 1$ as $n \to \infty$, take $U_n \subset D_n$ such that $|U_n| = o(k_n)$.

Letting $X_n = U_n \cup U_n^{-1}$, $Y_n = D_n \setminus U_n$, with $|X_n| = \Delta_n$ and $|Y_n| = d_n$, and considering the mixed Cayley graphs $G'_n = C(H_n, X_n, Y_n)$ of diam 2 we still have $|G'_n|/(\Delta_n + d_n)^2 \to 1$ as $n \to \infty$.
Proper strengthenings of Theorem 1 should be concerned with simple and irredundant mixed Cayley graphs (with no digons and in which removal of any generator increases the diameter). This appears to be much harder.

Theorem 2

There is an infinite sequence of simple and irredundant mixed \((\Delta_n, d_n)\)-regular Cayley graphs \(G_n\) of diameter 2 such that \(4d_n/\Delta_n^2 \to 1\) and \(|G_n|/M_2(\Delta_n, d_n) \to 1\) as \(n \to \infty\).

Proof: Finite fields, affine groups and very particular generating sets. A full extension of Theorem 2 to simple and irredundant mixed Cayley graphs remains open – lack of suitable generating sets for Cayley graphs and digraphs approaching the Moore bound for diameter 2.
Proper strengthenings of Theorem 1 should be concerned with *simple* and *irredundant* mixed Cayley graphs (with no digons and in which removal of any generator increases the diameter).

Theorem 2

There is an infinite sequence of simple and irredundant mixed (Δ_n, d_n)-regular Cayley graphs G_n of diameter 2 such that $4d_n/\Delta_n \to 1$ and $|G_n|/M_2(\Delta_n, d_n) \to 1$ as $n \to \infty$.

Proof: Finite fields, affine groups and very particular generating sets.

A full extension of Theorem 2 to simple and irredundant mixed Cayley graphs remains open – lack of suitable generating sets for Cayley graphs and digraphs approaching the Moore bound for diameter 2.
Proper strengthenings of Theorem 1 should be concerned with *simple* and *irredundant* mixed Cayley graphs (with no digons and in which removal of any generator increases the diameter). This appears to be much harder.
Proper strengthenings of Theorem 1 should be concerned with *simple* and *irredundant* mixed Cayley graphs (with no digons and in which removal of any generator increases the diameter). This appears to be much harder.

Theorem 2

There is an infinite sequence of simple and irredundant mixed (Δ_n, d_n)-regular Cayley graphs G_n of diameter 2 such that $4d_n/\Delta_n^2 \to 1$ and $|G_n|/M_2(\Delta_n, d_n) \to 1$ as $n \to \infty$.
Results for mixed Cayley graphs of diameter two

Proper strengthenings of Theorem 1 should be concerned with *simple* and *irredundant* mixed Cayley graphs (with no digons and in which removal of any generator increases the diameter). This appears to be much harder.

Theorem 2

There is an infinite sequence of simple and irredundant mixed (Δ_n, d_n)-regular Cayley graphs G_n of diameter 2 such that $4d_n/\Delta_n^2 \to 1$ and $|G_n|/M_2(\Delta_n, d_n) \to 1$ as $n \to \infty$.

Proof: Finite fields, affine groups and very particular generating sets.
Proper strengthenings of Theorem 1 should be concerned with *simple* and *irredundant* mixed Cayley graphs (with no digons and in which removal of any generator increases the diameter). This appears to be much harder.

Theorem 2

There is an infinite sequence of simple and irredundant mixed (Δ_n, d_n)-regular Cayley graphs G_n of diameter 2 such that $4d_n/\Delta_n^2 \to 1$ and $|G_n|/M_2(\Delta_n, d_n) \to 1$ as $n \to \infty$.

Proof: Finite fields, affine groups and very particular generating sets.

A full extension of Theorem 2 to simple and irredundant mixed Cayley graphs remains open –
Results for mixed Cayley graphs of diameter two

Proper strengthenings of Theorem 1 should be concerned with simple and irredundant mixed Cayley graphs (with no digons and in which removal of any generator increases the diameter). This appears to be much harder.

Theorem 2

There is an infinite sequence of simple and irredundant mixed \((\Delta_n, d_n)\)-regular Cayley graphs \(G_n\) of diameter 2 such that \(4d_n/\Delta_n^2 \to 1\) and \(|G_n|/M_2(\Delta_n, d_n) \to 1\) as \(n \to \infty\).

Proof: Finite fields, affine groups and very particular generating sets.

A full extension of Theorem 2 to simple and irredundant mixed Cayley graphs remains open – lack of suitable generating sets for Cayley graphs and digraphs approaching the Moore bound for diameter 2.
THANK YOU
THANK YOU