A proof of the non existence of a mixed Moore graph of order 486

Nacho López, J. Pujolàs

Departament de Matemàtica Universitat de Lleida, C.Jaume II, 69, E-25001 Lleida, Spain

IWONT 2014

A mixed graph may contain (undirected) edges as well as (directed) arcs.

- ₹ ₹ >

A mixed graph may contain (undirected) edges as well as (directed) arcs.

Definition (Bosák, 1978)

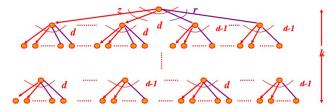
A mixed Moore graph G of diameter k is a mixed graph such that for every pair of vertices there exists a unique trail of length at most k joining them.

A mixed graph may contain (undirected) edges as well as (directed) arcs.

Definition (Bosák, 1978)

A mixed Moore graph G of diameter k is a mixed graph such that for every pair of vertices there exists a unique trail of length at most k joining them.

A mixed Moore graph G of order n is a (totally) regular graph (without loops). If r is the undirected degree and z is the directed degree, then,

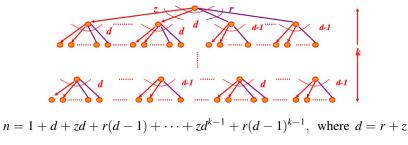


A mixed graph may contain (undirected) edges as well as (directed) arcs.

Definition (Bosák, 1978)

A mixed Moore graph G of diameter k is a mixed graph such that for every pair of vertices there exists a unique trail of length at most k joining them.

A mixed Moore graph G of order n is a (totally) regular graph (without loops). If r is the undirected degree and z is the directed degree, then,



[Nguyen, Miller, 2008]

Moore graphs and Directed Moore graphs

- r = 0 (no edges) → Directed Moore graphs [Plesník and Znám '74, Bridges and Toueg '80] only exists for:
 - k = 1 (complete digraph K_{z+1})
 - z = 1 (directed cycle \vec{C}_{k+1})

Moore graphs and Directed Moore graphs

- r = 0 (no edges) → Directed Moore graphs [Plesník and Znám '74, Bridges and Toueg '80] only exists for:
 - k = 1 (complete digraph K_{z+1})
 - z = 1 (directed cycle \vec{C}_{k+1})
- *z* = 0 (no arcs) → *Moore graphs* [Banai and Ito '73, Hoffman and Singleton '60, Damerell '73] only exists for:
 - k = 1 and $r \ge 1$ (Complete graph K_{r+1});
 - $k \ge 3$ and r = 2 (Cycle graph C_{2k+1});
 - k = 2 and r = 2 (Cycle graph C_5);
 - k = 2 and r = 3 (Petersen graph);
 - k = 2 and r = 7 (Hoffman-Singleton graph);
 - *k* = 2 and *r* = 57 (?)

伺 ト く ヨ ト く ヨ トー

Proper Mixed Moore graphs

 $r \geq 1$ and $z \geq 1 \rightarrow Proper Mixed Moore graphs$

A proof of the non existence of a mixed Moore graph of order 486

▶ ∢ ≣ ▶

- (E

Proper Mixed Moore graphs

 $r \geq 1$ and $z \geq 1 \rightarrow Proper Mixed Moore graphs$

Theorem (Nguyen, Gimbert, Miller, 2007)

Proper Mixed Moore graphs of diameter $k \ge 3$ *do not exist.*

A proof of the non existence of a mixed Moore graph of order 486

► 4 Ξ ►

Proper Mixed Moore graphs

 $r \geq 1$ and $z \geq 1 \rightarrow$ *Proper Mixed Moore graphs*

Theorem (Nguyen, Gimbert, Miller, 2007)

Proper Mixed Moore graphs of diameter $k \ge 3$ *do not exist.*

Bosák necessary condition for the existence of mixed Moore graphs of diameter k = 2:

Exists odd
$$c \in \mathbb{Z}$$
 such that $r = \frac{1}{4}(c^2 + 3)$ and $c|(4z - 3)(4z + 5)|$

/⊒ ► < ∃ ►

Matrix equation of Mixed Moore graphs of diameter two

Let *A* be the adjacency matrix of a mixed Moore graph of diameter two, then there is a unique trail of length ≤ 2 between any pair of vertices, that is,

$$I + A + A^2 = J + rl$$

Matrix equation of Mixed Moore graphs of diameter two

Let *A* be the adjacency matrix of a mixed Moore graph of diameter two, then there is a unique trail of length ≤ 2 between any pair of vertices, that is,

$$I + A + A^2 = J + rI$$

The characteristic polynomial of A is given by

 $\Phi_A(x) = (x-d)(x-\alpha)^a (x-\beta)^b \text{ where } a+b=n-1, \ \alpha = \frac{-1+\sqrt{4r-3}}{2} \text{ and } \beta = \frac{-1-\sqrt{4r-3}}{2}.$

Matrix equation of Mixed Moore graphs of diameter two

Let *A* be the adjacency matrix of a mixed Moore graph of diameter two, then there is a unique trail of length ≤ 2 between any pair of vertices, that is,

$$I + A + A^2 = J + rI$$

The characteristic polynomial of A is given by

 $\Phi_A(x) = (x - d)(x - \alpha)^a(x - \beta)^b$ where a + b = n - 1, $\alpha = \frac{-1 + \sqrt{4r - 3}}{2}$ and $\beta = \frac{-1 - \sqrt{4r - 3}}{2}$. The traces of A^m can be calculated using the roots of $\Phi_A(x)$ and their multiplicities $\operatorname{Tr}(A^m) = d^m + a\alpha^m + b\beta^m$. Besides, The traces of A^m have a 'geometrical' meaning:

 $\operatorname{Tr}(A^m) = n \cdot \# \{ \text{ closed walks of length } m \text{ of any vertex } \}$

Since *a* and *b* must be non-negative integers, The two ways calculation of $Tr(A^m)$ can be used to determine necessary conditions on the existence of mixed Moore graphs.

Proposition

$$\operatorname{Tr}(A) = 0 \Leftrightarrow \exists \text{ odd } c \in \mathbb{Z} \text{ such that } r = \frac{1}{4}(c^2 + 3) \text{ and } c | (4z - 3)(4z - 5)|$$

Cases of order n < 110

Exists odd $c \in \mathbb{Z}$ such that $r = \frac{1}{4}(c^2 + 3)$ and c|(4z - 3)(4z + 5)|

Moore bound	r	z	d	Existence	Uniqueness
6	1	1	2	Ka(2, 2)	Yes
12	1	2	3	Ka(3, 2)	Yes
18	3	1	4	Bosák	Yes
20	1	3	4	Ka(4, 2)	Yes
30	1	4	5	Ka(5,2)	Yes
40	3	3	6	?	?
42	1	5	6	Ka(6, 2)	Yes
54	3	4	7	?	?
56	1	6	7	Ka(7, 2)	Yes
72	1	7	8	Ka(8,2)	Yes
84	7	2	9	?	?
88	3	6	9	?	?
90	1	8	9	Ka(9, 2)	Yes
108	3	7	10	Jørgensen	No
110	1	9	10	Ka(10, 2)	Yes

A proof of the non existence of a mixed Moore graph of order 486

э

mixed Moore graphs of directed degree one

When z = 1 there are only three possibilities for *r*, according to Bosàk eq.

Exists odd
$$c \in \mathbb{Z}$$
 such that $r = \frac{1}{4}(c^2 + 3)$ and $c|(4z - 3)(4z + 5)$

• • = •

mixed Moore graphs of directed degree one

When z = 1 there are only three possibilities for *r*, according to Bosàk eq.

Exists odd
$$c \in \mathbb{Z}$$
 such that $r = \frac{1}{4}(c^2 + 3)$ and $c|(4z - 3)(4z + 5)|$

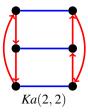
• r = 1. A mixed Moore graph G_1 of order n = 6,

mixed Moore graphs of directed degree one

When z = 1 there are only three possibilities for *r*, according to Bosàk eq.

Exists odd
$$c \in \mathbb{Z}$$
 such that $r = \frac{1}{4}(c^2 + 3)$ and $c|(4z - 3)(4z + 5)|$

• r = 1. A mixed Moore graph G_1 of order n = 6,



mixed Moore graphs of directed degree one

When z = 1 there are only three possibilities for *r*, according to Bosàk eq.

Exists odd
$$c \in \mathbb{Z}$$
 such that $r = \frac{1}{4}(c^2 + 3)$ and $c|(4z - 3)(4z + 5)|$

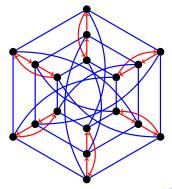
2 r = 3. A mixed Moore graph G_3 of order n = 18,

mixed Moore graphs of directed degree one

When z = 1 there are only three possibilities for *r*, according to Bosàk eq.

Exists odd
$$c \in \mathbb{Z}$$
 such that $r = \frac{1}{4}(c^2 + 3)$ and $c|(4z - 3)(4z + 5)|$

2 r = 3. A mixed Moore graph G_3 of order n = 18,



mixed Moore graphs of directed degree one

When z = 1 there are only three possibilities for *r*, according to Bosàk eq.

Exists odd
$$c \in \mathbb{Z}$$
 such that $r = \frac{1}{4}(c^2 + 3)$ and $c|(4z - 3)(4z + 5)|$

() r = 21. A mixed Moore graph G_{21} of order n = 486,

• • = •

mixed Moore graphs of directed degree one

When z = 1 there are only three possibilities for *r*, according to Bosàk eq.

Exists odd
$$c \in \mathbb{Z}$$
 such that $r = \frac{1}{4}(c^2 + 3)$ and $c|(4z - 3)(4z + 5)|$

(3) r = 21. A mixed Moore graph G_{21} of order n = 486,

The proof of the nonexistence of G_{21}

Properties of a mixed Moore graph G_r of directed degree one.

The proof of the nonexistence of G_{21}

Properties of a mixed Moore graph G_r of directed degree one. Regarding arcs

The proof of the nonexistence of G_{21}

Properties of a mixed Moore graph G_r of directed degree one. Regarding arcs

• Every vertex of G_r belongs to a unique directed cycle of length 3.

The proof of the nonexistence of G_{21}

Properties of a mixed Moore graph G_r of directed degree one. Regarding arcs

- Every vertex of G_r belongs to a unique directed cycle of length 3.
- There is a partition $\Upsilon = \{V_1, V_2, \dots, V_{\frac{n}{3}}\}$ of the vertex set V of G_r , |V| = n, such that the subgraph of G_r induced by V_i is a directed cycle of length 3, for all $1 \le i \le \frac{n}{3}$.

The proof of the nonexistence of G_{21}

Properties of a mixed Moore graph G_r of directed degree one. Regarding arcs

- Every vertex of G_r belongs to a unique directed cycle of length 3.
- There is a partition $\Upsilon = \{V_1, V_2, \dots, V_{\frac{n}{3}}\}$ of the vertex set V of G_r , |V| = n, such that the subgraph of G_r induced by V_i is a directed cycle of length 3, for all $1 \le i \le \frac{n}{3}$.

Regarding edges

The proof of the nonexistence of G_{21}

Properties of a mixed Moore graph G_r of directed degree one. Regarding arcs

- Every vertex of G_r belongs to a unique directed cycle of length 3.
- There is a partition $\Upsilon = \{V_1, V_2, \dots, V_{\frac{n}{3}}\}$ of the vertex set V of G_r , |V| = n, such that the subgraph of G_r induced by V_i is a directed cycle of length 3, for all $1 \le i \le \frac{n}{3}$.

Regarding edges

Proposition

Let V and V' be two different sets of the partition Υ of G_r . Then, the subgraph of G_r induced by $V \cup V'$ is one of the following (mixed) graphs:

- The union of two directed cycles of length 3.
- The Kautz digraph Ka(2,2).

イロト イ押ト イヨト イヨト

э

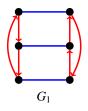
The proof of the nonexistence of G_{21}

- The vertex set of G_r^* is the partition set $\Upsilon = \{V_1, V_2, \dots, V_{\frac{n}{3}}\},\$
- there is an edge between V_i and V_j if and only if the subgraph of G_r induced by V_i ∪ V_j is the Kautz digraph Ka(2, 2).

The proof of the nonexistence of G_{21}

We define the (undirected) *reduced graph* of G_r , denoted by G_r^* , as follows:

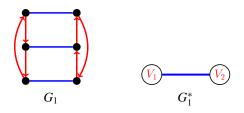
- The vertex set of G_r^* is the partition set $\Upsilon = \{V_1, V_2, \dots, V_{\frac{n}{3}}\},\$
- there is an edge between V_i and V_j if and only if the subgraph of G_r induced by V_i ∪ V_j is the Kautz digraph Ka(2, 2).



 G_1^*

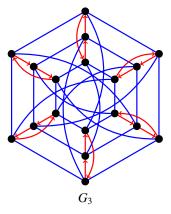
The proof of the nonexistence of G_{21}

- The vertex set of G_r^* is the partition set $\Upsilon = \{V_1, V_2, \dots, V_{\frac{n}{3}}\},\$
- there is an edge between V_i and V_j if and only if the subgraph of G_r induced by V_i ∪ V_j is the Kautz digraph Ka(2, 2).



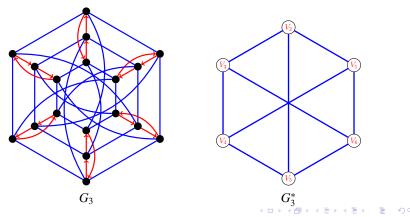
The proof of the nonexistence of G_{21}

- The vertex set of G_r^* is the partition set $\Upsilon = \{V_1, V_2, \dots, V_{\frac{n}{3}}\},\$
- there is an edge between V_i and V_j if and only if the subgraph of G_r induced by V_i ∪ V_j is the Kautz digraph Ka(2, 2).



The proof of the nonexistence of G_{21}

- The vertex set of G_r^* is the partition set $\Upsilon = \{V_1, V_2, \dots, V_{\frac{n}{3}}\},\$
- there is an edge between V_i and V_j if and only if the subgraph of G_r induced by V_i ∪ V_j is the Kautz digraph Ka(2, 2).



A proof of the non existence of a mixed Moore graph of order 486

The proof of the nonexistence of G_{21}

- The vertex set of G_r^* is the partition set $\Upsilon = \{V_1, V_2, \dots, V_{\frac{n}{3}}\},\$
- there is an edge between V_i and V_j if and only if the subgraph of G_r induced by V_i ∪ V_j is the Kautz digraph Ka(2, 2).

The proof of the nonexistence of G_{21}

- The vertex set of G_r^* is the partition set $\Upsilon = \{V_1, V_2, \dots, V_{\frac{n}{3}}\},\$
- there is an edge between V_i and V_j if and only if the subgraph of G_r induced by V_i ∪ V_j is the Kautz digraph Ka(2, 2).

The proof of the nonexistence of G_{21}

We define the (undirected) *reduced graph* of G_r , denoted by G_r^* , as follows:

- The vertex set of G_r^* is the partition set $\Upsilon = \{V_1, V_2, \dots, V_{\frac{n}{3}}\},\$
- there is an edge between V_i and V_j if and only if the subgraph of G_r induced by V_i ∪ V_j is the Kautz digraph Ka(2, 2).

Properties of G_r^* :

Observation

 G_r^* is a regular (undirected) graph of degree r containing $\frac{n}{3}$ vertices, where $n = r^2 + 2r + 3$. Moreover, diam $(G_r^*) = 2$ for r > 1 and diam $(G_1^*) = 1$.

・ 同 ト ・ 国 ト ・ 国 ト ・

The proof of the nonexistence of G_{21}

We define the (undirected) *reduced graph* of G_r , denoted by G_r^* , as follows:

- The vertex set of G_r^* is the partition set $\Upsilon = \{V_1, V_2, \dots, V_{\frac{n}{3}}\},\$
- there is an edge between V_i and V_j if and only if the subgraph of G_r induced by V_i ∪ V_j is the Kautz digraph Ka(2, 2).

Properties of G_r^* :

Observation

 G_r^* is a regular (undirected) graph of degree r containing $\frac{n}{3}$ vertices, where $n = r^2 + 2r + 3$. Moreover, diam $(G_r^*) = 2$ for r > 1 and diam $(G_1^*) = 1$.

Proposition

 G_r^* is a triangle-free graph.

A proof of the non existence of a mixed Moore graph of order 486

・ロト ・ 戸 ト ・ ヨ ト ・ ヨ ト ・

We define the (undirected) *reduced graph* of G_r , denoted by G_r^* , as follows:

- The vertex set of G_r^* is the partition set $\Upsilon = \{V_1, V_2, \dots, V_{\frac{n}{3}}\},\$
- there is an edge between V_i and V_j if and only if the subgraph of G_r induced by V_i ∪ V_j is the Kautz digraph Ka(2, 2).

Properties of G_r^* :

Observation

 G_r^* is a regular (undirected) graph of degree r containing $\frac{n}{3}$ vertices, where $n = r^2 + 2r + 3$. Moreover, diam $(G_r^*) = 2$ for r > 1 and diam $(G_1^*) = 1$.

Proposition

 G_r^* is a triangle-free graph.

Proposition

Let V and V' be two non-adjacent vertices of G_r^* . Then, V and V' have exactly three common neighbours.

A proof of the non existence of a mixed Moore graph of order 486

Theorem

 G_r^* exists if and only if r = 1 or r = 3.

Sketch of the proof:

Theorem

 G_r^* exists if and only if r = 1 or r = 3.

Sketch of the proof:

$$b_{ii} = r \text{ for all } 1 \le i \le \frac{n}{3};$$

Theorem

 G_r^* exists if and only if r = 1 or r = 3.

Sketch of the proof:

$$b_{ii} = r \text{ for all } 1 \le i \le \frac{n}{3};$$

2) if
$$a_{ij} = 1$$
, then $b_{ij} = 0$;

Theorem

 G_r^* exists if and only if r = 1 or r = 3.

Sketch of the proof:

$$b_{ii} = r \text{ for all } 1 \le i \le \frac{n}{3};$$

2 if
$$a_{ij} = 1$$
, then $b_{ij} = 0$;

if
$$a_{ij} = 0$$
, then $b_{ij} = 3$, for all $i \neq j$.

Theorem

 G_r^* exists if and only if r = 1 or r = 3.

Sketch of the proof:

Let $A = (a_{ij})$ be the adj. matrix of G_r^* , r > 1, and $A^2 = (b_{ij})$. Then,

$$b_{ii} = r \text{ for all } 1 \le i \le \frac{n}{3};$$

2 if
$$a_{ij} = 1$$
, then $b_{ij} = 0$;

if
$$a_{ij} = 0$$
, then $b_{ij} = 3$, for all $i \neq j$.

Hence, every row of A^2 contains r 0's, $\frac{n}{3} - 1 - r$ 3's, and just one r. This means $r + 3(\frac{n}{3} - 1 - r)$ is an eigenvalue of A^2 corresponding to j. Taking into account that r is an eigenvalue of A corresponding to j, then

$$r^2 = r + 3(\frac{n}{3} - 1 - r)$$

must hold. The solution to this equation is precisely r = 3.

(Open Problem)

Discover new mixed Moore graphs (or prove that they do not exist).

🗇 🕨 🖉 🕨 🖉 🗎

(Open Problem)

Discover new mixed Moore graphs (or prove that they do not exist).

Research lines:

- Algorithmic search: We develop an algorithm in Python (using NetworkX library) in order to find mixed Moore graphs $M_{r,z}$. To this end, we give:
 - Specific functions for mixed graphs.
 - The generating tree $T_{r,z}$ of any mixed Moore graph.
 - Specific arcs/edges to $T_{r,z}$ to find a generating subgraph $G_{r,z}$ of $M_{r,z}$.
 - An heuristic to complete the regularity of $G_{r,z}$. Then check if $G_{r,z}$ is a mixed Moore graph.

(Open Problem)

Discover new mixed Moore graphs (or prove that they do not exist).

/∰ ► < Ξ ►

- (E

(Open Problem)

Discover new mixed Moore graphs (or prove that they do not exist).

Research lines:

- **Particular cases:** Try different pairs (r, z) satisfying Bosák equation.
- **Related problems:** We have studied the underlying undirected graph UG_r of a mixed Moore graph with z = 1 and we find out that

Proposition

 UG_r is a distance regular graph of diameter 4 with intersection array:

$$\begin{pmatrix} r & r-1 & 2 & 1 \\ 1 & 1 & r-1 & r \end{pmatrix}$$

In particular, the spectra of UG_{21} is -6^{56} , $-\sqrt{21}^{162}$, 3^{105} , $\sqrt{21}^{162}$, 21^1 .

Does this distance regular graph exist?

(Open Problem)

Discover new mixed Moore graphs (or prove that they do not exist for specific classes).

▶ ∢ ≣ ▶

(Open Problem)

Discover new mixed Moore graphs (or prove that they do not exist for specific classes).

Research lines:

- Cayley digraphs: Construction techniques given by groups.
 - Almost every known mixed Moore graphs is a Cayley digraph.
 - We use *Sage* in order to work with the *SmallGroups* library (*GAP*) together with *NetworkX* library (*Python*). For an small group of order *n*, we generate all the 'feasible' generating sets that gives a mixed graph with undirected degree *r* and directed degree *z*. Then we compute the diameter of these digraphs. We find out that

Proposition

A mixed Moore graph of order 40 *must be a non-Cayley digraph. A mixed Moore graph of order* 54 *must be a non-Cayley digraph.*

Research lines:

- Matrix construction: Try to generate adjacency matrices *A* of mixed Moore graphs
 - We know A partially.
 - There are strong conditions for *A* to be the adjacency matrix of a mixed Moore graph.
 - Try to construct *A* for small values of *n*.

A proof of the non existence of a mixed Moore graph of order 486

Open Problems

- Give more necessary conditions for the existence of mixed Moore graphs.
- Discover new mixed Moore graphs (or prove that they do not exist for specific cases).
- Any mixed Moore digraph is a directed strongly regular graph with $\lambda = 1$ and $\mu = 0$, where

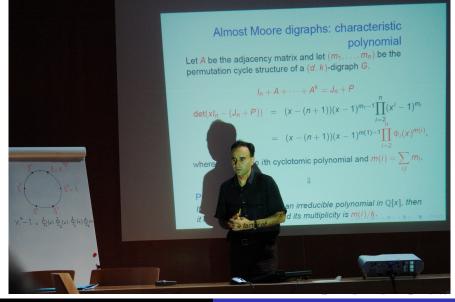
$$A^2 = rI + \lambda A + \mu(J - A - I)$$

Can we say something new using this point of view?

• Are there non-Cayley proper mixed Moore digraphs for r > 1?

A (10) A (10) A (10) A

Devoted to our friend Joan Gimbert. He would loved to see this proof.



A proof of the non existence of a mixed Moore graph of order 486