

The degree-diameter problem for circulant graphs of degree 8 and 9

Rob Lewis July 2014

Some definitions

A circulant graph $X = \operatorname{Cay}(\mathbb{Z}_n, C)$ is the Cayley graph of a cyclic group \mathbb{Z}_n where $C \subset \mathbb{Z}_n \setminus \{0\}$ is the connection set: (i,j) is an edge of X iff $j-i \in C$.

X is vertex-transitive and has degree |C|. X is undirected iff C is inverse-closed.

Notation: d degree

k diameter

n number of vertices / order of the graph

$$f \quad \text{dimension} = \begin{cases} d/2 & d \text{ even} \\ (d-1)/2 & d \text{ odd} \end{cases} \text{ / # of independent generators}$$

CC(d,k) maximum size for an undirected Cayley graph of a cyclic group

AC(d,k) maximum size for an undirected Cayley graph of an Abelian group

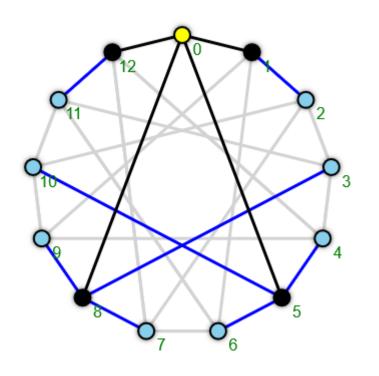
M(d,k) the Moore bound for any undirected graph

 $M_{AC}(d,k)$ an upper bound for AC(d,k), sharper than M(d,k)

 $M_{CC}(d,k)$ a conjectured upper bound for CC(d,k), sharper than $M_{AC}(d,k)$

Example:

dimension f = 2, degree d = 4, diameter k = 2, order n = 13

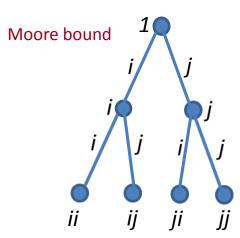


Connection set $C = \{1, 5, 8, 12\} = \{\pm 1, \pm 5\}$ Generator set $\{1, 5\}$

Distance from Vertex 0: black = 1, blue = 2

So $CC(4,2) \ge 13$ Moore bound M(4,2) = 17Is CC(4,2) = 13? Yes

Sharper upper bound for Abelian Cayley graphs of degree $d \ge 3$, $M_{AC}(d, k)$



Abelian Cayley 0 graph
A pair of j
generators i, j
i j
j
i j
j
2i i+j 2

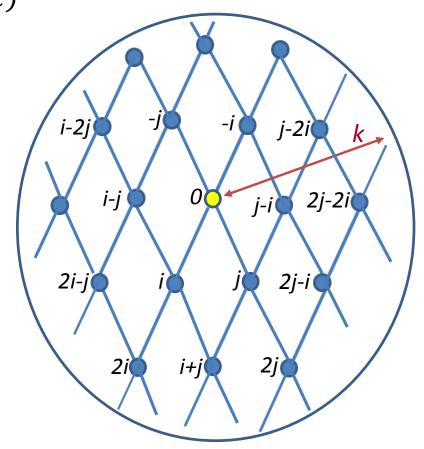
Forms an *f*-dimensional Lee sphere of radius *k* (Manhattan metric).

Example: *f*=2

The vertices in the lattice will repeat.

Order of sphere

$$S(f,k) = \sum_{i=0}^{f} 2^{i} {f \choose i} {k \choose i}$$



An upper bound for the order of Abelian Cayley graphs is

$$M_{AC}(d,k) = \begin{cases} S(f,k) & d \text{ even, } f = d/2\\ S(f,k) + S(f,k-1) & d \text{ odd, } f = (d-1)/2 \end{cases}$$

Upper bound, $M_{AC}(d, k)$

$$M_{AC}(d,k) = \begin{cases} \frac{2^f}{f!} k^f + \frac{2^{f-1}}{(f-1)!} k^{f-1} + O(k^{f-2}) & d \text{ even, } f = d/2\\ \frac{2^{f+1}}{f!} k^f + O(k^{f-2}) & d \text{ odd, } f = (d-1)/2 \end{cases}$$

Now consider the case $k \equiv 0 \pmod{f}$.

Define $a = \frac{4}{f}k$ and let the vector $(c_f c_{f-1} \dots c_1 c_0)$ represent the polynomial

$$c_f a^f + c_{f-1} a^{f-1} + \cdots + c_1 a + c_0$$
.

Then

$$M_{AC}(d,k) = \begin{cases} \frac{f^f}{2^{f-1}f!} (\frac{1}{2} \ 1 \ \dots) & d \text{ even, } f = d/2 \\ \frac{f^f}{2^{f-1}f!} (1 \ 0 \ \dots) & d \text{ odd, } f = (d-1)/2 \end{cases}$$

Extremal and largest known circulant graphs of degree 2 to 9 for arbitrary diameter k

Dimension <i>f</i>	Degree d	Order, n		Proven extremal	Source
1	2	2k + 1		All k	
1	3	4k		All k	
2	4	$2k^2 + 2k + 1$		All k	
2	5	$4k^2$		All k	
3	6	$(32k^3 + 48k^2 + 54k + 27)/27$ $(32k^3 + 48k^2 + 78k + 31)/27$ $(32k^3 + 48k^2 + 54k + 11)/27$	$k \equiv 1 \pmod{3}$	$k \le 18$	Dougherty & Faber, 2004
3	7	`	$k \equiv 0 \pmod{3}$ $k \equiv 1 \pmod{3}$ $k \equiv 2 \pmod{3}$	$k \le 10$	Dougherty & Faber, 2004
4	8	$(k^4 + 2k^3 + 6k^2 + 4k)/2$ (k ⁴ + 2k ³ + 6k ² + 6k + 1)/2	$k \equiv 0 \pmod{2}$ $k \equiv 1 \pmod{2}$	$3 \le k \le 7$	Lewis, 2013
4	9	$k^4 + 3k^2 + 2k k^4 + 3k^2$	$k \equiv 0 \pmod{2}$ $k \equiv 1 \pmod{2}$	$5 \le k \le 6$	Lewis, 2013

All these graphs have odd girth equal to 2k + 1, maximal

For largest known graphs of degree d=8 there is just one solution up to isomorphism

	$k \equiv 0 \pmod{2}$	$k \equiv 1 \pmod{2}$
Order of graph	$(k^4 + 2k^3 + 6k^2 + 4k)/2$	$(k^4 + 2k^3 + 6k^2 + 6k + 1)/2$
Gen set $g1$	1	1
<i>g</i> 2	$(k^3 + 2k^2 + 6k + 2)/2$	$(k^3 + k^2 + 5k + 3)/2$
g3	$(k^4 + 4k^2 - 8k)/4$	$(k^4 + 2k^2 - 8k - 11)/4$
g4	$(k^4 + 4k^2 - 6k)/4$	$(k^4 + 2k^2 - 4k - 7)/4$

The connection set is $\{\pm 1, \pm g2, \pm g3, \pm g4\}$

- Proven to exist for all k by constructing a four-dimensional lattice tiling (same method as Dougherty & Faber)
- Largest known solution for $k \ge 3$
- Proven extremal by computer search up to $M_{AC}(8, k)$ for $3 \le k \le 7$

For largest known graphs of degree d=9 there is one solution for even diameter k, and two for odd

The prime solution valid for all k

	$k \equiv 0 \pmod{2}$	$k \equiv 1 \pmod{4}$	$k \equiv 3 \pmod{4}$
Order of graph	$k^4 + 3k^2 + 2k$	$k^4 + 3k^2$	$k^4 + 3k^2$
Gen set $g1$	1	1	1
<i>g</i> 2	k + 1	k	k
<i>g</i> 3	$(k^4 - k^3 + 2k^2 - 2)/2$	$(k^4 + k^3 + k^2 + 3k - 2)/4$	$(k^4 - k^3 + k^2 - 3k - 2)/4$
g4	$(k^4 - k^3 + 4k^2 - 2)/2$	$(k^4 + k^3 + 5k^2 + 3k + 2)/4$	$(k^4 - k^3 + 5k^2 - 3k + 2)/4$

The connection set is $\{\pm 1, \pm g2, \pm g3, \pm g4, n/2\}$

This graph is not yet proven to exist for all kLargest known solution for $k \ge 5$ Proven extremal by computer search up to $M_{AC}(9,k)$ for $5 \le k \le 6$

The second degree 9 solution for odd k

Diameter, k	Generator set 1	Generator set 2		
$k \equiv 1 \pmod{14}$	$ \begin{array}{c} 1 \\ (k^4 + k^3 + 5k^2)/7 \\ (k^4 + k^3 + 5k^2 + 7k + 7)/7 \\ (3k^4 + 3k^3 + 8k^2 + 7k)/7 \end{array} $	$ \begin{array}{l} 1 \\ (k^4 - 3k^3 + 2k^2 - 7k)/7 \\ (2k^4 + k^3 + 4k^2)/7 \\ (2k^4 + k^3 + 4k^2 + 7k - 7)/7 \end{array} $		
$k \equiv 3 \pmod{14}$	$ \begin{array}{l} 1 \\ (k^4 - k^3 + k^2 - 7k - 7)/7 \\ (k^4 - k^3 + k^2)/7 \\ (3k^4 - 3k^3 + 10k^2 - 7k)/7 \end{array} $	$ \begin{array}{l} 1 \\ (2k^4 - 3k^3 + 5k^2 - 7k)/7 \\ (3k^4 - k^3 + 11k^2 - 7k + 7)/7 \\ (3k^4 - k^3 + 11k^2)/7 \end{array} $		
$k \equiv 5 \pmod{14}$	$ \begin{array}{c} 1 \\ (k^4 - 3k^3 + 4k^2 - 7)/7 \\ (2k^4 + k^3 + 8k^2)/7 \\ (2k^4 + k^3 + 8k^2 + 7k + 7)/7 \end{array} $	*		
$k \equiv 7 \pmod{14}$	$ \begin{array}{l} 1 \\ (2k^4 - 3k^3 + 7k^2 - 7k)/7 \\ (3k^4 - k^3 + 7k^2 - 7k - 7)/7 \\ (3k^4 - k^3 + 7k^2)/7 \end{array} $	$ \begin{array}{l} 1\\ (2k^4 + 3k^3 + 7k^2 + 7k)/7\\ (3k^4 + k^3 + 7k^2)/7\\ (3k^4 + k^3 + 7k^2 + 7k - 7)/7 \end{array} $		
$k \equiv 9 \pmod{14}$	*	$ \begin{array}{l} 1 \\ (k^4 + 3k^3 + 4k^2 + 7k)/7 \\ (2k^4 - k^3 + 8k^2 - 7k + 7)/7 \\ (2k^4 - k^3 + 8k^2)/7 \end{array} $		
$k \equiv 11 \pmod{14}$	$ \begin{array}{l} 1\\ (2k^4 + 3k^3 + 5k^2 + 7k)/7\\ (3k^4 + k^3 + 11k^2)/7\\ (3k^4 + k^3 + 11k^2 + 7k + 7)/7 \end{array} $	$ \begin{array}{l} 1 \\ (k^4 + k^3 + k^2)/7 \\ (k^4 + k^3 + k^2 + 7k - 7)/7 \\ (3k^4 + 3k^3 + 10k^2 + 7k)/7 \end{array} $		
$k \equiv 13 \pmod{14}$	$ \begin{array}{l} 1 \\ (k^4 + 3k^3 + 2k^2 + 7)/7 \\ (2k^4 - k^3 + 4k^2 - 7k - 7)/7 \\ (2k^4 - k^3 + 4k^2)/7 \end{array} $	$(3k^4 - 3k^3 + 8k^2 - 7k)/7$		
* No solutions for $k \equiv 9 \pmod{14}$ for generator set 1 or for $k \equiv 5 \pmod{14}$ for generator set 2				

Extremal and largest known circulant graphs compared with $M_{AC}(d,k)$

Consider again the case $k \equiv 0 \pmod{f}$ and the definition: $a = \frac{4}{f}k$.

Then for example, for f=1, d=2: $n=2k+1=2\frac{f}{4}a+1=\frac{1}{2}a+1=\left(\frac{1}{2}-1\right)$

Dimension <i>f</i>	Even degree <i>d</i>	Order <i>n</i>	Odd degree d	Order <i>n</i>	$\frac{f^f}{2^{f-1}f!}$
1	2	$\left(\frac{1}{2} 1\right)$	3	(1 0)	1
2	4	$\left(\frac{1}{2} 1 1\right)$	5	(1 0 2)	1
3	6	$\begin{pmatrix} \frac{1}{2} & 1 & \frac{3}{2} & 1 \end{pmatrix}$	7	(1 0 3 0)	9/8
4	8	$\begin{pmatrix} \frac{1}{2} & 1 & 3 & 2 & 0 \end{pmatrix}$	9	(1 0 3 2 0)	4/3
$M_{AC}(d,k)$		$\left(\frac{1}{2} 1 \dots \right) \times \frac{f^f}{2^{f-1}f!}$		$(1 \ 0 \ \dots) \times \frac{f^f}{2^{f-1}f!}$	625/384 ($f = 5$)
Lower bound	Chen & Jia, 1993	$\left(\frac{1}{2} \dots \right)$			$\sim 10^{12}$ ($f = 100$)
$M_{CC}(d,k)$	Conjecture	$\left(\frac{1}{2} 1 \dots \right)$		(1 0)	

Conclusion: Some conjectures

Initial conjectures

- 1) The degree 6/7 graphs by Dougherty & Faber and my degree 8/9 graphs are extremal for all greater diameters.
- 2) It should be possible to establish a much sharper upper bound than $M_{AC}(d,k)$ for circulant graphs, $M_{CC}(d,k) = \begin{pmatrix} \frac{1}{2} & 1 & \dots \end{pmatrix}$ for even degree, $\begin{pmatrix} 1 & 0 & \dots \end{pmatrix}$ for odd.
- 3) There exists a family of extremal circulant graphs for any degree d with order $n=\begin{pmatrix} \frac{1}{2} & 1 & \dots \end{pmatrix}$ for even degree, $\begin{pmatrix} 1 & 0 & \dots \end{pmatrix}$ for odd.
- 4) These graphs all have odd girth 2k + 1.

Revised conjectures (work in progress)

- 3a) For dimension $f \geq 5$ and even degree, there are no families with order $n = \begin{pmatrix} \frac{1}{2} & 1 & \dots \end{pmatrix}$. The best achievable is $\begin{pmatrix} \frac{1}{2} & \frac{1}{2} & \dots \end{pmatrix}$.
- 4a) For dimension $f \ge 5$, extremal circulant graphs all have odd girth less than 2k+1. The highest achievable is 2k-1.