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Proposition

Let G be a graph with odd girth g = 2k +1 and minimal degree d. Then
v(G)>1+d Y55 (d—1).
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Let G be a graph with odd girth g = 2k + 1 and minimal degree d. Then
v(G)>1+d Y55 (d—1).

m(d,2k +1) =1+ d > ¥ J(d — 1)’ is called the Moore bound.

v

Definition
A graph G with minimal degree d and girth g = 2k + 1 on m(d, g)
vertices is called a Moore graph of type (d, g).

v
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Moore Graphs

Figure : The unique Moore graph of type (3,5).
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Moore Graphs

Example

Figure : The Peterson graph is the unique Moore graph of type (3,5).
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Moore Graphs

Trivial examples: Kqy1, Cg. Allways assume d > 3, k > 2.
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Moore Graphs

Trivial examples: Kqy1, Cg. Allways assume d > 3, k > 2.

Theorem (Hoffmann, Singleton, Bannai, Ito, Damerell, 1960-73)

Any Moore graph with minimal degree d is d-regular, has girth 5 and
d e {3,7,57}.
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Moore Graphs

Trivial examples: Kqy1, Cg. Allways assume d > 3, k > 2.

Theorem (Hoffmann, Singleton, Bannai, Ito, Damerell, 1960-73)

Any Moore graph with minimal degree d is d-regular, has girth 5 and
d e {3,7,57}.

@ For d = 3 the unique Moore graph is the Peterson graph.
@ For d = 7 the unique Moore graph is the Hoffmann-Singleton graph.

@ For d =57 it is still unknown, if there exists a Moore graph.
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Definition

A connected graph G with minimal degree d and girth 2k + 1 on
m(d, 2k + 1) + € vertices is called a graph of type (d,2k + 1,¢). The
number € is called the excess of G.

F. Garbe (FU Berlin) S June 29, 2014 6 /22



Excess

A connected graph G with minimal degree d and girth 2k + 1 on
m(d, 2k + 1) + € vertices is called a graph of type (d,2k + 1,¢). The
number € is called the excess of G.

Proposition

Let e < Zf-:ol(d —1)'. Then a (d,2k + 1,¢)-graph is regular.
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Excess

A connected graph G with minimal degree d and girth 2k + 1 on
m(d, 2k + 1) + € vertices is called a graph of type (d,2k + 1,¢). The
number € is called the excess of G.

Let e < Zf:ol(d —1)'. Then a (d,2k + 1,¢)-graph is regular.

v

Theorem (Brown, Bannai, Ito, 1967-81)

There is no graph of type (d,2k + 1,1).

A\
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Excess 2

® ©

Figure : A graph of type (3,5,2).
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Excess 2

Example

Figure : A graph of type (3,5,2).
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What is known about graphs with excess 27
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What is known about graphs with excess 27

Theorem (Kovacs, 1981)

Let d €N beodd, d # 1> +1+3 and d # I> + | — 1 for every | € Z>y.
Then there is no graph of type (d, 5, 2).
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Let d €N beodd, d # 1> +1+3 and d # I> + | — 1 for every | € Z>y.
Then there is no graph of type (d, 5, 2).

There are constructions for

@ Two non-isomorphic graphs of type (3,5, 2).
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Then there is no graph of type (d, 5, 2).

There are constructions for

@ Two non-isomorphic graphs of type (3,5, 2).
@ One graph of type (4,5,2).

F. Garbe (FU Berlin)

Excess 2

June 29, 2014 9 /22



What is known about graphs with excess 27

Theorem (Kovacs, 1981)

Let d €N beodd, d # 1> +1+3 and d # I> + | — 1 for every | € Z>y.
Then there is no graph of type (d, 5, 2).

There are constructions for
@ Two non-isomorphic graphs of type (3,5, 2).
@ One graph of type (4,5,2).
@ One graph of type (3,7,2).
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Excess 2

We are going to prove:
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We are going to prove:

Theorem (G., 2013)

Let d € N be odd. Then there is no graph of type (d,9,2).
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We will use some algebraic properties of graphs with excess or defect 2
and introduce the following polynomials.

Definition

Define the polynomials Fy x(x) by
Fao(x) =1
del(X) =x+1
Fd,k+1(X) = XFd7k(X) — (d — 1)Fd,k_1(X) .
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Lemma (1)
Let G be a graph of type (d,2k + 1,2) and A its adjacency matrix. Then
Fax(A)=J-B,

where B consists of a disjoint union of ¢ cycles C; of length r; with
1 << c andJ is the all one matrix.
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Excess 2

Corollary

Let G be a graph of type (d,2k + 1,2) and B be the matrix from Lemma

1. Furthermore, let ¢ be the number of cycles of B and ¢y be the number
of cycles of B whose length is divisible by 2.

(i) If Fqk(x) — 2 is irreducible, then ¢ —1 =0 mod k.
(it) If Fgx(x)+ 2 is irreducible, then c; = 0 mod k.
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Corollary

Let G be a graph of type (d,2k + 1,2) and B be the matrix from Lemma
1. Furthermore, let ¢ be the number of cycles of B and ¢y be the number
of cycles of B whose length is divisible by 2.

(i) If Fqk(x) — 2 is irreducible, then ¢ —1 =0 mod k.
(it) If Fgx(x)+ 2 is irreducible, then c; = 0 mod k.

Proof.
Fdjk(A) =J—-B

v
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Corollary

Let G be a graph of type (d,2k + 1,2) and B be the matrix from Lemma
1. Furthermore, let ¢ be the number of cycles of B and ¢y be the number
of cycles of B whose length is divisible by 2.

(i) If Fqk(x) — 2 is irreducible, then ¢ —1 =0 mod k.
(it) If Fgx(x)+ 2 is irreducible, then c; = 0 mod k.

Proof.

Fak(A) = J — B = The eigenvalues of A are d and for
o(B) ={2,p2,- -+, tn} one root of every

Fa(x) = —pi, 2<i<n.

v
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Corollary

Let G be a graph of type (d,2k + 1,2) and B be the matrix from Lemma
1. Furthermore, let ¢ be the number of cycles of B and ¢y be the number
of cycles of B whose length is divisible by 2.

(i) If Fqk(x) — 2 is irreducible, then ¢ —1 =0 mod k.

(it) If Fgx(x)+ 2 is irreducible, then c; = 0 mod k.

Proof.

Fak(A) = J — B = The eigenvalues of A are d and for
o(B) ={2,p2,- -+, tn} one root of every

Fa(x) = —pi, 2<i<n.

Exactly ¢ — 1 eigenvalues are roots of Fy «(x) — 2. Exactly ¢ eigenvalues
are roots of Fg (x) + 2. O

v
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Let d be odd and k be even. If Fq (x) + 2 and Fq x(x) — 2 have both no
integer root, then there is no graph of type (d,2k + 1,2).
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Let d be odd and k be even. If Fq (x) + 2 and Fq x(x) — 2 have both no
integer root, then there is no graph of type (d,2k + 1,2).

Proof.
Far(x)£2=>_yaix' = x* +xk1 4 (d — 1) - (lower order terms) + 2.

v
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Let d be odd and k be even. If Fq (x) + 2 and Fq x(x) — 2 have both no
integer root, then there is no graph of type (d,2k + 1,2).

Proof.
Far(x)£2=>_yaix' = x* +xk1 4 (d — 1) - (lower order terms) + 2.
20a; 0< i< k—2.

v
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Let d be odd and k be even. If Fq (x) + 2 and Fq x(x) — 2 have both no
integer root, then there is no graph of type (d,2k + 1,2).

Proof.
Far(x)£2=>_yaix' = x* +xk1 4 (d — 1) - (lower order terms) + 2.
20aj 0< i< k—2. Fyp(0)=(d—1)z.

v

F. Garbe (FU Berlin) Excess 2 June 29, 2014 14 / 22



Let d be odd and k be even. If Fq (x) + 2 and Fq x(x) — 2 have both no
integer root, then there is no graph of type (d,2k + 1,2).

Proof.
Fax(x)£2=>_paix" =xK+xk71 + (d — 1) - (lower order terms) + 2.
20j 0< i< k—2 Fgp(0)=(d—1)2. 22 f(d —1)% £2 = a.

v
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Let d be odd and k be even. If Fq (x) + 2 and Fq x(x) — 2 have both no
integer root, then there is no graph of type (d,2k + 1,2).

Proof.
Fax(x)£2=>_paix" =xK+xk71 + (d — 1) - (lower order terms) + 2.
20j 0< i< k—2 Fgp(0)=(d—1)2. 22 f(d —1)% £2 = a.
Eisenstein = Fy (x) £ 2 have irreducible factor of degree at least k — 1.
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Let d be odd and k be even. If Fq (x) + 2 and Fq x(x) — 2 have both no
integer root, then there is no graph of type (d,2k + 1,2).

Proof.
Fax(x)£2=>_paix" =xK+xk71 + (d — 1) - (lower order terms) + 2.
20j 0< i< k—2 Fgp(0)=(d—1)2. 22 f(d —1)% £2 = a.
Eisenstein = Fy (x) £ 2 have irreducible factor of degree at least k — 1.
Hence c —1=0, coc =0 mod 2 and
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Let d be odd and k be even. If Fq (x) + 2 and Fq x(x) — 2 have both no
integer root, then there is no graph of type (d,2k + 1,2).

Proof.
Fax(x)£2=>_paix" =xK+xk71 + (d — 1) - (lower order terms) + 2.
202 0< i< k—2 Fyu(0)=(d—1)2. 22 f(d —1)2 £2 = ap.

Eisenstein = Fy (x) £ 2 have irreducible factor of degree at least k — 1.
Hence c —1=0, coc =0 mod 2 and

n= Z |C| + Z |ICl=c—cw=1 mod?2

C odd cycle in B C even cycle in B

v
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Let d be odd and k be even. If Fq (x) + 2 and Fq x(x) — 2 have both no
integer root, then there is no graph of type (d,2k + 1,2).

Proof.
Fax(x)£2=>_paix" =xK+xk71 + (d — 1) - (lower order terms) + 2.
202 0< i< k—2 Fyu(0)=(d—1)2. 22 f(d —1)2 £2 = ap.
Eisenstein = Fy (x) £ 2 have irreducible factor of degree at least k — 1.
Hence c —1=0, coc =0 mod 2 and

n= Z |C| + Z |ICl=c—cw=1 mod?2

C odd cycle in B C even cycle in B

Butn=2+1+dY  (d-1)"1=1+1-1=0mod 2. O

v
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Proof of the Theorem

We examine

Foa(x)£2=x*+x>-3x*(d—-1) —2x(d — 1) +(d —1)>+2=0.
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Proof of the Theorem

We examine

Foa(x)£2=x*+x>-3x*(d—-1) —2x(d — 1) +(d —1)>+2=0.
We set z =d — 1 and get

0=x*+x3-3x°z2—2xz+2°+2.
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Proof of the Theorem

Proof.

We examine
Foa(x)£2=x*+x>-3x*(d—-1) —2x(d — 1) +(d —1)>+2=0.
We set z =d — 1 and get
0=x*+x>—3x2z—2xz 4+ 2 £2.

The discriminant of the quadratic polynomial in z has to be rational =
integer solution (x,y) of

y? =5x* +8x3+4x>F8.

Hence it is sufficient to compute the integer solutions of this equation. [

i
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Proof of the Theorem

We transform the first equation under U = x — 1 to

V2 =5U* +28U°% +58U° + 52U +9. (1)

and the second equation under U = x+ 1 to

V2 =50*—120° +10U% - 4U +9. (D)

F. Garbe (FU Berlin) Excess 2 June 29, 2014 16 / 22



Proof of the Theorem

Proof.

We transform the first equation under U = x — 1 to

V2 =5U* +28U°% +58U° + 52U +9. (1)
and the second equation under U = x+ 1 to
V2 =50*—120° +10U% - 4U +9. (D)

Quartic elliptic curves solved by Algorithm of Tzanakis (1996). (Magma
IntegralQuarticPoints([as,a3,a2,a1,40]))
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Proof of the Theorem

Proof.

We transform the first equation under U = x — 1 to

V2 =5U* +28U°% +58U° + 52U +9. (1)
and the second equation under U = x+ 1 to

V2 =50* — 1203 + 10U? —4U + 9. (D)

Quartic elliptic curves solved by Algorithm of Tzanakis (1996). (Magma
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Proof of the Theorem

Proof.

We transform the first equation under U = x — 1 to

V2 =5U* +28U°% +58U° + 52U +9. (1)
and the second equation under U = x+ 1 to
V2 =50* — 1203 + 10U? —4U + 9. (D)

Quartic elliptic curves solved by Algorithm of Tzanakis (1996). (Magma
IntegralQuarticPoints([as,a3,a2,a1,a0])) Integer solutions of (I): (0,+3)
Integer solutions of (I1): (0,+£3),(2,+5)

Solutions to the original curves: (1,2),(1,5) respectively
(1,1),(1,6),(—1,0),(—1,3). Hence there is no graph for d # 3,5 by
Lemma 2. Ol

v
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Proof of the Theorem

Case d = 3: Brinkmann, McKay and Saager (1995) no (3,9, 2)-graph.
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Proof of the Theorem

Case d = 3: Brinkmann, McKay and Saager (1995) no (3,9, 2)-graph.
Case of d = 5: Fsa(x) +2 = (x — 1)(x® + 2x> — 10x — 18).
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Proof of the Theorem

Proof.

Case d = 3: Brinkmann, McKay and Saager (1995) no (3,9, 2)-graph.
Case of d = 5: Fsa(x) +2 = (x — 1)(x® + 2x> — 10x — 18).
Remember eigenvalues of A are roots of Fs54(x) + p, thus roots of
pu(—Fs.4(x)), where p,(x) is the minimal polynomial of the eigenvalue
1 = 2 cos(42F) of B.

c
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Proof of the Theorem

Proof.

Case d = 3: Brinkmann, McKay and Saager (1995) no (3,9, 2)-graph.
Case of d = 5: Fsa(x) +2 = (x — 1)(x® + 2x> — 10x — 18).
Remember eigenvalues of A are roots of Fs54(x) + p, thus roots of
pu(—Fs.4(x)), where p,(x) is the minimal polynomial of the eigenvalue
= 2cos(j2?”) of B.

p2cos(ﬂi)(—F574(X)) is irreducible for 1 <j < c—1and 3 < c < n=428.

F. Garbe (FU Berlin) Excess 2 June 29, 2014 17 / 22



Proof of the Theorem

Proof.

Case d = 3: Brinkmann, McKay and Saager (1995) no (3,9, 2)-graph.
Case of d = 5: Fsa(x) +2 = (x — 1)(x® + 2x> — 10x — 18).
Remember eigenvalues of A are roots of Fs54(x) + p, thus roots of
pu(—Fs.4(x)), where p,(x) is the minimal polynomial of the eigenvalue
= 2cos(j2?”) of B.

p2cos(ﬂi)(—F574(X)) is irreducible for 1 <j < c—1and 3 < c < n=428.

tr(A):5+mA(1)-1+C_1_3mA(1)-(—2)—n_c.

4

F. Garbe (FU Berlin) Excess 2 June 29, 2014 17 / 22



Proof of the Theorem

Proof.

Case d = 3: Brinkmann, McKay and Saager (1995) no (3,9, 2)-graph.
Case of d = 5: Fsa(x) +2 = (x — 1)(x® + 2x> — 10x — 18).
Remember eigenvalues of A are roots of Fs54(x) + p, thus roots of
pu(—Fs.4(x)), where p,(x) is the minimal polynomial of the eigenvalue
= 2cos(j2?”) of B.

p2cos(ﬂi)(—F574(X)) is irreducible for 1 <j < c—1and 3 < c < n=428.

tr(A):5+mA(1)-1+C_1_3mA(1)-(—2)—nzc.

tr(A) =0 = 0=20ma(1) — 5¢c — 1216,

no solution modulo 5. ]

v
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Cage Number

This result improves the lower bound for the cage number for d odd and
girth 9 to
n(d,9) > m(d,9) + 4.

F. Garbe (FU Berlin) Excess 2 June 29, 2014 18 / 22



Proposition

Let G be a graph with diameter D and maximal degree d. Then
v(G) <1+dXPMd - 1)
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Let G be a graph with diameter D and maximal degree d. Then
v(G) <1+dXPMd - 1)

Definition

A connected graph G with maximal degree d and diameter D on
m(d,2D + 1) — § vertices is called a graph of type (d,2k + 1,—4). The
number 0 is called the defect of G.
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Let G be a graph with diameter D and maximal degree d. Then
v(G) <1+dXPMd - 1)

A connected graph G with maximal degree d and diameter D on

m(d,2D + 1) — 0 vertices is called a graph of type (d,2k +1,—¢). The
number ¢ is called the defect of G.

A,

Proposition

Let be D > 2 and 6 < Zf-;_ol(d —1)". Then a (d, D, —5)-graph is regular.
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Theorem (G., 2014)

Let d € N be odd. Then there is no graph of type (d, 4, —2).
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Theorem (G., 2014)

Let d € N be odd. Then there is no graph of type (d, 4, —2).

Theorem (Feria-Purdn, Miller and Pineda-Villavicencio, 2011)

Let d € N be even. Then there is no graph of type (d, 4, —2).
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Theorem (G., 2014)

Let d € N be odd. Then there is no graph of type (d, 4, —2).

Theorem (Feria-Purdn, Miller and Pineda-Villavicencio, 2011)

Let d € N be even. Then there is no graph of type (d, 4, —2).

There is no graph with diameter 4 and defect 2. \

F. Garbe (FU Berlin) Excess 2 June 29, 2014 20 / 22




Problem for girth higher than 9: No general method known to determine
the integral points of curves of genus higher than 1. For example g = 13
leads to curves of genus 4

x84+ x®—5x*(d—1)—4x3(d—1)+6x*(d —1)>+3x(d —1)>—(d—1)3+£2 =0
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Problem for girth higher than 9: No general method known to determine
the integral points of curves of genus higher than 1. For example g = 13
leads to curves of genus 4

x84+ x®—5x*(d—1)—4x3(d—1)+6x*(d —1)>+3x(d —1)>—(d—1)3+£2 =0

But Siegel proved in 1929 that there are only finitely many integral points
for curves of genus > 1.
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Problem for girth higher than 9: No general method known to determine
the integral points of curves of genus higher than 1. For example g = 13
leads to curves of genus 4

x84+ x®—5x*(d—1)—4x3(d—1)+6x*(d —1)>+3x(d —1)>—(d—1)3+£2 =0

But Siegel proved in 1929 that there are only finitely many integral points
for curves of genus > 1.
Using other methods to check for integer solutions leads to:
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g

degree %1 or diameter result
d =0 mod 5 6 no (d,6,—2), (d,13,2)
d=5mod7 6 no (d,6, 2), (d,13,2)
d =4 mod 11 6 no (d,6,—2), (d,13,2)
d=2,5,10,12 mod 13 6 no (d,6,-2), (d,13,2)
d =3 mod 5 8 no (d,8,-2), (d,17,2)
d=0,2mod 7 8 no (d,8,-2), (d,17,2)
d =9 mod 11 8 no (d,8,-2), (d,17,2)
d =6 mod 13 8 no (d,8,-2), (d,17,2)
d =7,10 mod 11 10 no (d,10,-2), (d,21,2)
d=2,3,4mod 5 12 no (d,12,-2), (d,25,2)
d=2,6mod7 12 no (d,12,-2), (d,25,2)
d=2,6,8 mod 11 12 no (d,12,—2). (d.25.2)
d=4,7mod 13 12 no (d. 12, -2). (d, 25.2)
3 D=0mod4 |no(3,D,-2), (3,2D+1,2)
5 D=2mod4 |no (5 D,—2) (52D+1,2)
7 D=0mod2 |no(7,D,-2), (7,2D+1,2)
9,D;—2),
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