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Moore Bound

Proposition

Let G be a graph with odd girth g = 2k + 1 and minimal degree d. Then
v(G ) ≥ 1 + d

∑k−1
i=0 (d − 1)i .

Definition

m(d , 2k + 1) = 1 + d
∑k−1

i=0 (d − 1)i is called the Moore bound.

Definition

A graph G with minimal degree d and girth g = 2k + 1 on m(d , g)
vertices is called a Moore graph of type (d , g).
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Moore Graphs

Example

Figure : The unique Moore graph of type (3, 5).
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Moore Graphs

Example

Figure : The Peterson graph is the unique Moore graph of type (3, 5).
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Moore Graphs

Trivial examples: Kd+1,Cg . Allways assume d ≥ 3, k ≥ 2.

Theorem (Hoffmann, Singleton, Bannai, Ito, Damerell, 1960-73)

Any Moore graph with minimal degree d is d-regular, has girth 5 and
d ∈ {3, 7, 57}.

For d = 3 the unique Moore graph is the Peterson graph.

For d = 7 the unique Moore graph is the Hoffmann-Singleton graph.

For d = 57 it is still unknown, if there exists a Moore graph.
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Excess

Definition

A connected graph G with minimal degree d and girth 2k + 1 on
m(d , 2k + 1) + ε vertices is called a graph of type (d , 2k + 1, ε). The
number ε is called the excess of G .

Proposition

Let ε <
∑k−1

i=0 (d − 1)i . Then a (d , 2k + 1, ε)-graph is regular.

Theorem (Brown, Bannai, Ito, 1967-81)

There is no graph of type (d , 2k + 1, 1).

F. Garbe (FU Berlin) Excess 2 June 29, 2014 6 / 22



Excess

Definition

A connected graph G with minimal degree d and girth 2k + 1 on
m(d , 2k + 1) + ε vertices is called a graph of type (d , 2k + 1, ε). The
number ε is called the excess of G .

Proposition

Let ε <
∑k−1

i=0 (d − 1)i . Then a (d , 2k + 1, ε)-graph is regular.

Theorem (Brown, Bannai, Ito, 1967-81)

There is no graph of type (d , 2k + 1, 1).

F. Garbe (FU Berlin) Excess 2 June 29, 2014 6 / 22



Excess

Definition

A connected graph G with minimal degree d and girth 2k + 1 on
m(d , 2k + 1) + ε vertices is called a graph of type (d , 2k + 1, ε). The
number ε is called the excess of G .

Proposition

Let ε <
∑k−1

i=0 (d − 1)i . Then a (d , 2k + 1, ε)-graph is regular.

Theorem (Brown, Bannai, Ito, 1967-81)

There is no graph of type (d , 2k + 1, 1).

F. Garbe (FU Berlin) Excess 2 June 29, 2014 6 / 22



Excess 2

Example

Figure : A graph of type (3, 5, 2).
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Excess 2

Example

Figure : A graph of type (3, 5, 2).
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Excess 2

What is known about graphs with excess 2?

Theorem (Kovács, 1981)

Let d ∈ N be odd, d 6= l2 + l + 3 and d 6= l2 + l − 1 for every l ∈ Z≥0.
Then there is no graph of type (d , 5, 2).

There are constructions for

Two non-isomorphic graphs of type (3, 5, 2).

One graph of type (4, 5, 2).

One graph of type (3, 7, 2).
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Excess 2

We are going to prove:

Theorem (G., 2013)

Let d ∈ N be odd. Then there is no graph of type (d , 9, 2).
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Excess 2

We will use some algebraic properties of graphs with excess or defect 2
and introduce the following polynomials.

Definition

Define the polynomials Fd ,k(x) by

Fd ,0(x) = 1

Fd ,1(x) = x + 1

Fd ,k+1(x) = xFd ,k(x)− (d − 1)Fd ,k−1(x) .

F. Garbe (FU Berlin) Excess 2 June 29, 2014 11 / 22



Lemma 1

Lemma (1)

Let G be a graph of type (d , 2k + 1, 2) and A its adjacency matrix. Then

Fd ,k(A) = J − B ,

where B consists of a disjoint union of c cycles Ci of length ri with
1 ≤ i ≤ c and J is the all one matrix.

F. Garbe (FU Berlin) Excess 2 June 29, 2014 12 / 22



Excess 2

Corollary

Let G be a graph of type (d , 2k + 1, 2) and B be the matrix from Lemma
1. Furthermore, let c be the number of cycles of B and c2 be the number
of cycles of B whose length is divisible by 2.

(i) If Fd ,k(x)− 2 is irreducible, then c − 1 ≡ 0 mod k.

(ii) If Fd ,k(x) + 2 is irreducible, then c2 ≡ 0 mod k.

Proof.

Fd ,k(A) = J − B ⇒ The eigenvalues of A are d and for
σ(B) = {2, µ2, · · · , µn} one root of every

Fd ,k(x) = −µi , 2 ≤ i ≤ n.

Exactly c − 1 eigenvalues are roots of Fd ,k(x)− 2. Exactly c2 eigenvalues
are roots of Fd ,k(x) + 2.
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Lemma 2

Lemma (2)

Let d be odd and k be even. If Fd ,k(x) + 2 and Fd ,k(x)− 2 have both no
integer root, then there is no graph of type (d , 2k + 1, 2).

Proof.

Fd ,k(x)± 2 =
∑

i=0 aix
i = xk + xk−1 + (d − 1) · (lower order terms)± 2.

2|ai 0 ≤ i ≤ k − 2. Fd ,k(0) = (d − 1)
k
2 . 22 6 |(d − 1)

k
2 ± 2 = a0.

Eisenstein ⇒ Fd ,k(x)± 2 have irreducible factor of degree at least k − 1.
Hence c − 1 ≡ 0, c2 ≡ 0 mod 2 and

n =
∑

C odd cycle in B

|C |+
∑

C even cycle in B

|C | ≡ c − c2 ≡ 1 mod 2 .

But n = 2 + 1 + d
∑k−1

i=0 (d − 1)i−1 ≡ 1 + 1 · 1 ≡ 0 mod 2.
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Proof of the Theorem

Proof.

We examine

Fd ,4(x)± 2 = x4 + x3 − 3x2(d − 1)− 2x(d − 1) + (d − 1)2 ± 2 = 0 .

We set z = d − 1 and get

0 = x4 + x3 − 3x2z − 2xz + z2 ± 2 .

The discriminant of the quadratic polynomial in z has to be rational ⇒
integer solution (x , y) of

y2 = 5x4 + 8x3 + 4x2 ∓ 8 .

Hence it is sufficient to compute the integer solutions of this equation.
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Proof of the Theorem

Proof.

We transform the first equation under U = x − 1 to

V 2 = 5U4 + 28U3 + 58U2 + 52U + 9 . (I)

and the second equation under U = x + 1 to

V 2 = 5U4 − 12U3 + 10U2 − 4U + 9 . (II)

Quartic elliptic curves solved by Algorithm of Tzanakis (1996). (Magma
IntegralQuarticPoints([a4,a3,a2,a1,a0])) Integer solutions of (I): (0,±3)
Integer solutions of (II): (0,±3), (2,±5)
Solutions to the original curves: (1, 2), (1, 5) respectively
(1, 1), (1, 6), (−1, 0), (−1, 3). Hence there is no graph for d 6= 3, 5 by
Lemma 2.
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(1, 1), (1, 6), (−1, 0), (−1, 3). Hence there is no graph for d 6= 3, 5 by
Lemma 2.
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Proof of the Theorem

Proof.

Case d = 3: Brinkmann, McKay and Saager (1995) no (3, 9, 2)-graph.

Case of d = 5: F5,4(x) + 2 = (x − 1)(x3 + 2x2 − 10x − 18).

Remember eigenvalues of A are roots of F5,4(x) + µ, thus roots of
pµ(−F5,4(x)), where pµ(x) is the minimal polynomial of the eigenvalue

µ = 2 cos( j2πc ) of B.
p
2 cos( j2π

c
)
(−F5,4(x)) is irreducible for 1 ≤ j ≤ c − 1 and 3 ≤ c ≤ n = 428.

tr(A) = 5 + mA(1) · 1 +
c − 1−mA(1)

3
· (−2)− n − c

4
.

tr(A) = 0 ⇒ 0 = 20mA(1)− 5c − 1216 ,

no solution modulo 5.
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Cage Number

This result improves the lower bound for the cage number for d odd and
girth 9 to

n(d , 9) ≥ m(d , 9) + 4 .
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Defect

Proposition

Let G be a graph with diameter D and maximal degree d. Then
v(G ) ≤ 1 + d

∑D−1
i=0 (d − 1)i .

Definition

A connected graph G with maximal degree d and diameter D on
m(d , 2D + 1)− δ vertices is called a graph of type (d , 2k + 1,−δ). The
number δ is called the defect of G .

Proposition

Let be D ≥ 2 and δ <
∑k−1

i=0 (d − 1)i . Then a (d ,D,−δ)-graph is regular.
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Defect

Theorem (G., 2014)

Let d ∈ N be odd. Then there is no graph of type (d , 4,−2).

Theorem (Feria-Purón, Miller and Pineda-Villavicencio, 2011)

Let d ∈ N be even. Then there is no graph of type (d , 4,−2).

Corollary

There is no graph with diameter 4 and defect 2.
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Problem for girth higher than 9: No general method known to determine
the integral points of curves of genus higher than 1. For example g = 13
leads to curves of genus 4

x6+x5−5x4(d−1)−4x3(d−1)+6x2(d−1)2+3x(d−1)2−(d−1)3±2 = 0

But Siegel proved in 1929 that there are only finitely many integral points
for curves of genus ≥ 1.
Using other methods to check for integer solutions leads to:
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degree g−1
2 or diameter result

d ≡ 0 mod 5 6 no (d , 6,−2), (d , 13, 2)
d ≡ 5 mod 7 6 no (d , 6,−2), (d , 13, 2)
d ≡ 4 mod 11 6 no (d , 6,−2), (d , 13, 2)

d ≡ 2, 5, 10, 12 mod 13 6 no (d , 6,−2), (d , 13, 2)
d ≡ 3 mod 5 8 no (d , 8,−2), (d , 17, 2)
d ≡ 0, 2 mod 7 8 no (d , 8,−2), (d , 17, 2)
d ≡ 9 mod 11 8 no (d , 8,−2), (d , 17, 2)
d ≡ 6 mod 13 8 no (d , 8,−2), (d , 17, 2)

d ≡ 7, 10 mod 11 10 no (d , 10,−2), (d , 21, 2)
d ≡ 2, 3, 4 mod 5 12 no (d , 12,−2), (d , 25, 2)
d ≡ 2, 6 mod 7 12 no (d , 12,−2), (d , 25, 2)

d ≡ 2, 6, 8 mod 11 12 no (d , 12,−2), (d , 25, 2)
d ≡ 4, 7 mod 13 12 no (d , 12,−2), (d , 25, 2)

3 D ≡ 0 mod 4 no (3,D,−2), (3, 2D + 1, 2)
5 D ≡ 2 mod 4 no (5,D,−2), (5, 2D + 1, 2)
7 D ≡ 0 mod 2 no (7,D,−2), (7, 2D + 1, 2)
9 D ≡ 0 mod 4 no (9,D,−2), (9, 2D + 1, 2)

Table : New results for graphs with excess or defect 2.
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