Decomposition of Complete Bipartite Graphs into Prisms

Dalibor Froncek

University of Minnesota Duluth

dalibor@d.umn.edu

IWONT 2014, July 1, 2014

Decompositions and factorizations

Definition

A *G*-decomposition of the complete graph K_n or $K_{n,n}$ is a collection of subgraphs G_1, G_2, \ldots, G_s , all isomorphic to *G*, such that every edge of K_n or $K_{n,n}$ belongs to exactly one copy G_i of *G*.

Decompositions and factorizations

Definition

A *G*-decomposition of the complete graph K_n or $K_{n,n}$ is a collection of subgraphs G_1, G_2, \ldots, G_s , all isomorphic to *G*, such that every edge of K_n or $K_{n,n}$ belongs to exactly one copy G_i of *G*.

Definition

A G-decomposition of K_n or $K_{n,n}$ is called a G-factorization if G is a *spanning* subgraph of K_n or $K_{n,n}$ (usually without isolated vertices).

Decompositions and factorizations

Definition

A *G*-decomposition of the complete graph K_n or $K_{n,n}$ is a collection of subgraphs G_1, G_2, \ldots, G_s , all isomorphic to *G*, such that every edge of K_n or $K_{n,n}$ belongs to exactly one copy G_i of *G*.

Definition

A G-decomposition of K_n or $K_{n,n}$ is called a G-factorization if G is a spanning subgraph of K_n or $K_{n,n}$ (usually without isolated vertices).

Definition

A k-factorization of K_n or $K_{n,n}$ is a G-factorization where G is a k-regular subgraph of K_n or $K_{n,n}$.

- 4 週 ト - 4 三 ト - 4 三 ト

k = 1 1-factorizations (only)

- ∢ ∃ ▶

k = 1 1-factorizations (only)

k = 2

• 2-factorizations: Oberwolfach Problem $OP(s_1, s_2, ..., s_t)$ (*n* odd)

• *C_m*-decompositions

A (1) > A (2) > A

k = 1 1-factorizations (only)

k = 2

2-factorizations: Oberwolfach Problem OP(s₁, s₂,..., s_t) (n odd)
C_m-decompositions

$$OP(s_1, s_2, ..., s_t)$$
: Let $n = s_1 + s_2 + \cdots + s_t$.

We decompose K_n into (n-1)/2 copies of $C_{s_1} \cup C_{s_2} \cup \cdots \cup C_{s_t}$.

Interpretation: We have a conference with n mathematicians, and we want to sit them over (n-1)/2 nights around a collection of round tables of sizes s_1, s_2, \ldots, s_t so that each of them sits next to each other exactly once during the conference.

イロト 不得下 イヨト イヨト 二日

k = 1 1-factorizations (only)

k = 2

2-factorizations: Oberwolfach Problem OP(s₁, s₂,..., s_t) (n odd)
C_m-decompositions

$$OP(s_1, s_2, ..., s_t)$$
: Let $n = s_1 + s_2 + \cdots + s_t$.

We decompose K_n into (n-1)/2 copies of $C_{s_1} \cup C_{s_2} \cup \cdots \cup C_{s_t}$.

Interpretation: We have a conference with *n* mathematicians, and we want to sit them over (n-1)/2 nights around a collection of round tables of sizes s_1, s_2, \ldots, s_t so that each of them sits next to each other exactly once during the conference.

Spouse avoiding version: Use $K_n - M$ when *n* is even. *M* is a perfect matching.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

k = 1 1-factorizations (only)

k = 2

2-factorizations: Oberwolfach Problem OP(s₁, s₂,..., s_t) (n odd)
C_m-decompositions

Alspach, Schellenberg, Stinson, Wagner (1989) OP(s, s, ..., s) has a solution except OP(3, 3) and OP(3, 3, 3, 3).

(人間) トイヨト イヨト

k = 1 1-factorizations (only)

k = 2

- 2-factorizations: Oberwolfach Problem $OP(s_1, s_2, ..., s_t)$ (*n* odd)
- C_m-decompositions

Alspach, Schellenberg, Stinson, Wagner (1989)

 $OP(s, s, \ldots, s)$ has a solution except OP(3, 3) and OP(3, 3, 3, 3).

.

k = 1 1-factorizations (only)

k = 2

- 2-factorizations: Oberwolfach Problem $OP(s_1, s_2, ..., s_t)$ (*n* odd)
- C_m-decompositions

Alspach, Schellenberg, Stinson, Wagner (1989)

 $OP(s, s, \ldots, s)$ has a solution except OP(3, 3) and OP(3, 3, 3, 3).

Alspach, Gavlas (2001); Sajna (2002)

A C_m -decomposition of K_n exists for all admissible values of n.

(本語)と (本語)と (本語)と

k = 1 1-factorizations (only)

► < ∃ ►</p>

k = 1 1-factorizations (only)

k = 2

- 2-factorizations: Bipartite Oberwolfach Problem $BOP(s_1, s_2, ..., s_t)$ (*n* and all s_i are even)
 - C_m-decompositions

k = 1 1-factorizations (only)

k = 2

• 2-factorizations: Bipartite Oberwolfach Problem $BOP(s_1, s_2, \ldots, s_t)$ (*n* and all s_i are even)

• *C_m*-decompositions

$$BOP(s_1, s_2, ..., s_t)$$
: Let $2n = s_1 + s_2 + \cdots + s_t$.

We decompose $K_{n,n}$ into n/2 copies of $C_{s_1} \cup C_{s_2} \cup \cdots \cup C_{s_t}$.

Interpretation: We have a conference with n mathematicians and n sociologists, and we want to sit them over n/2 nights around a collection of round tables of sizes s_1, s_2, \ldots, s_t so that each mathematician sits next to each sociologist exactly once during the conference.

イロト 不得下 イヨト イヨト 二日

k = 1 1-factorizations (only)

k = 2

• 2-factorizations: Bipartite Oberwolfach Problem $BOP(s_1, s_2, \ldots, s_t)$ (*n* and all s_i are even)

• *C_m*-decompositions

BOP
$$(s_1, s_2, ..., s_t)$$
: Let $2n = s_1 + s_2 + \cdots + s_t$.

We decompose $K_{n,n}$ into n/2 copies of $C_{s_1} \cup C_{s_2} \cup \cdots \cup C_{s_t}$.

Interpretation: We have a conference with n mathematicians and n sociologists, and we want to sit them over n/2 nights around a collection of round tables of sizes s_1, s_2, \ldots, s_t so that each mathematician sits next to each sociologist exactly once during the conference.

Spouse avoiding version: Use $K_{n,n} - M$ when *n* is odd.

イロト 不得下 イヨト イヨト 二日

k = 1 1-factorizations (only)

k = 2

- 2-factorizations: Bipartite Oberwolfach Problem $BOP(s_1, s_2, ..., s_t)$ (*n* and all s_i are even)
 - *C_m*-decompositions

Häggqvist (1985), Piotrowski (1991)

BOP(s, s, ..., s) has a solution for all admissible values of s except when n = s = 6.

A = A = A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

k = 1 1-factorizations (only)

k = 2

- 2-factorizations: Bipartite Oberwolfach Problem $BOP(s_1, s_2, \ldots, s_t)$ (*n* and all s_i are even)
- C_m-decompositions

Häggqvist (1985), Piotrowski (1991)

BOP(s, s, ..., s) has a solution for all admissible values of s except when n = s = 6.

k = 1 1-factorizations (only)

k = 2

- 2-factorizations: Bipartite Oberwolfach Problem $BOP(s_1, s_2, \ldots, s_t)$ (*n* and all s_i are even)
- C_m-decompositions

Häggqvist (1985), Piotrowski (1991)

BOP(s, s, ..., s) has a solution for all admissible values of s except when n = s = 6.

Bermond and Huang (1978), Sotteau (1981)

 K_{k_1,k_2} can be decomposed into C_n if and only if n, k_1, k_2 are all even, n divides k_1k_2 and both $k_1, k_2 \ge \frac{n}{2}$.

・ロン ・四 ・ ・ ヨン ・ ヨン

k = 3 cubic graph factorizations

The necessary condition is that n = 6s + 4.

k = 3 cubic graph factorizations

The necessary condition is that n = 6s + 4.

Adams, Bryant and Khodkar (1997)

All but six cubic graphs of order 10 factorize K_{10} .

k = 3 cubic graph factorizations

The necessary condition is that n = 6s + 4.

Adams, Bryant and Khodkar (1997)

All but six cubic graphs of order 10 factorize K_{10} .

Adams, Ardal, Manuch, Hoa, Rosenfeld, Stacho (2005)

All but *three* cubic graphs of order 16 factorize K_{16} .

They also found some infinite classes of cubic graphs that factorize K_n for any n = 6s + 4.

k = 3 cubic graph factorizations

The necessary condition is that n = 6s + 4.

Adams, Bryant and Khodkar (1997)

All but six cubic graphs of order 10 factorize K_{10} .

Adams, Ardal, Manuch, Hoa, Rosenfeld, Stacho (2005)

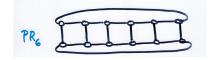
All but *three* cubic graphs of order 16 factorize K_{16} .

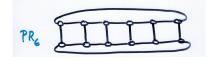
They also found some infinite classes of cubic graphs that factorize K_n for any n = 6s + 4.

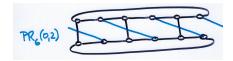
Conjecture

All cubic graphs of order n = 6s + 4 for $s \ge 3$ factorize K_n .

A (10) A (10) A (10)







k = 3 cubic graph decompositions

Maheo (1980), Kotzig (1981)

 $Q_3 = PR_4$ decomposes K_n if and only if $n \ge 16$ and either (i) $n \equiv 1 \pmod{24}$ or (ii) $n \equiv 0 \pmod{8}$ and $n \equiv 1 \pmod{3}$.

Decomposition tools

Definition

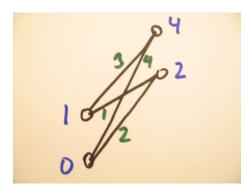
An α -labeling of a bipartite graph G with m edges is an injection f from $V(G) = X \cup Y$ to $\{0, 1, \ldots, m\}$ such that the set of all edge lengths (defined as $\ell(xy) = f(y) - f(x)$) is equal to the set $\{1, 2, \ldots, m\}$ and there is λ such that $f(x) \leq \lambda$ and $f(y) > \lambda$ for every edge e = xy.

イロト 不得下 イヨト イヨト 二日

Decomposition tools

Definition

An α -labeling of a bipartite graph G with m edges is an injection f from $V(G) = X \cup Y$ to $\{0, 1, \ldots, m\}$ such that the set of all edge lengths (defined as $\ell(xy) = f(y) - f(x)$) is equal to the set $\{1, 2, \ldots, m\}$ and there is λ such that $f(x) \leq \lambda$ and $f(y) > \lambda$ for every edge e = xy.



(日) (周) (三) (三)

k = 3 cubic graph decompositions

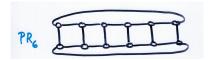
Frucht, Gallian (1988)

All prisms PR_m with 3m edges are graceful and therefore decompose K_{6m+1} . When *m* is even, then PR_m decompose K_{6mk+1} for any k > 0.

k = 3 cubic graph decompositions

Frucht, Gallian (1988)

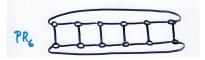
All prisms PR_m with 3m edges are graceful and therefore decompose K_{6m+1} . When *m* is even, then PR_m decompose K_{6mk+1} for any k > 0.



k = 3 cubic graph decompositions

Frucht, Gallian (1988)

All prisms PR_m with 3m edges are graceful and therefore decompose K_{6m+1} . When *m* is even, then PR_m decompose K_{6mk+1} for any k > 0.



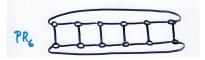
Cichacz, Dib, Froncek (2013)

 $PR_m(0,2)$ with 3m edges decomposes K_{6mk+1} for any k > 0.

k = 3 cubic graph decompositions

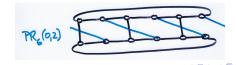
Frucht, Gallian (1988)

All prisms PR_m with 3m edges are graceful and therefore decompose K_{6m+1} . When *m* is even, then PR_m decompose K_{6mk+1} for any k > 0.



Cichacz, Dib, Froncek (2013)

 $PR_m(0,2)$ with 3m edges decomposes K_{6mk+1} for any k > 0.



$PR_6(0,j)$ - and $PR_8(0,j)$ -decompositions of K_n

(日) (周) (三) (三)

$PR_6(0,j)$ - and $PR_8(0,j)$ -decompositions of K_n

Cichacz, Froncek, Meszka (2011)

 PR_{6} - and $PR_{6}(0,2)$ -decomposition of K_{n} exists iff $n \equiv 1,28 \pmod{36}$.

・ 何 ト ・ ヨ ト ・ ヨ ト

$PR_6(0,j)$ - and $PR_8(0,j)$ -decompositions of K_n

Cichacz, Froncek, Meszka (2011)

 PR_{6} - and $PR_{6}(0,2)$ -decomposition of K_{n} exists iff $n \equiv 1,28 \pmod{36}$.

Cichacz, Froncek, Meszka (2012)

 PR_{8} -, $PR_{8}(0,2)$ -, and $PR_{8}(0,4)$ -decomposition of K_{n} exists iff $n \equiv 1, 16 \pmod{48}$.

超す イヨト イヨト ニヨ

(日) (周) (日) (日)

Häggqvist (1989)

Every cubic bipartite graph with 2n vertices whose no component is isomorphic to the Heawood graph decomposes $K_{6n,6n}$.

/□ ▶ 《 ⋽ ▶ 《 ⋽

Häggqvist (1989)

Every cubic bipartite graph with 2n vertices whose no component is isomorphic to the Heawood graph decomposes $K_{6n,6n}$.

Cichacz, Froncek (2009)

 $PR_n(0,j)$ -factorization of $K_{n,n}$ exists iff $n \equiv 0 \pmod{6}$.

▶ < ∃ ▶ < ∃</p>

Cichacz, Froncek (2009)

$PR_n(0,j)$ -factorization of $K_{n,n}$ exists iff $n \equiv 0 \pmod{6}$.

Main ingredients:

Cichacz, Froncek (2009)

 $PR_n(0,j)$ -factorization of $K_{n,n}$ exists iff $n \equiv 0 \pmod{6}$.

Main ingredients:

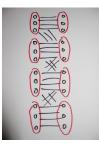
Bermond, Huang (1978); Sotteau (1981)

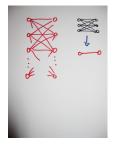
 K_{k_1,k_2} can be decomposed into C_n iff n, k_1, k_2 are all even, $k_1 \ge k_2 \ge n/2$, and $n|k_1k_2$.

Corollary

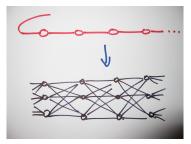
 $K_{n,n}$ can be factorized into C_{2n} for n even.

□ ▶ ▲ □ ▶ ▲ □



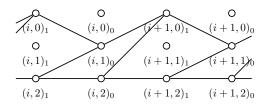


Now factorize $K_{n/3,n/3}$ into Hamiltonian cycles $C_{2n/3}$ (remember n/3 is even).



< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >





< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Necessary conditions: $n \equiv 0 \pmod{4}, j \equiv 0 \pmod{2}$

イロト イポト イヨト イヨト 二日

Necessary conditions: $n \equiv 0 \pmod{4}, j \equiv 0 \pmod{2}$

Cichacz, Froncek, Kovar (2009)

 $PR_n(0,j)$ -decomposition of $K_{3n/2,3n/2}$ exists when $n \equiv 0 \pmod{8}$ and $n/\gcd(n,j) \equiv 0 \pmod{2}$.

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Necessary conditions: $n \equiv 0 \pmod{4}, j \equiv 0 \pmod{2}$

Cichacz, Froncek, Kovar (2009)

 $PR_n(0,j)$ -decomposition of $K_{3n/2,3n/2}$ exists when $n \equiv 0 \pmod{8}$ and $n/\gcd(n,j) \equiv 0 \pmod{2}$.

Cichacz, Froncek, Kovar (2013)

 $PR_n(0,j)$ -decomposition of $K_{3n/2,3n/2}$ exists when $n \equiv j \equiv 0 \pmod{4}$.

- 本間 と えき と えき とうき

Necessary conditions: $n \equiv 0 \pmod{4}, j \equiv 0 \pmod{2}$

Cichacz, Froncek, Kovar (2009)

 $PR_n(0,j)$ -decomposition of $K_{3n/2,3n/2}$ exists when $n \equiv 0 \pmod{8}$ and $n/\gcd(n,j)\equiv 0 \pmod{2}$.

Cichacz, Froncek, Kovar (2013)

 $PR_n(0,j)$ -decomposition of $K_{3n/2,3n/2}$ exists when $n \equiv j \equiv 0 \pmod{4}$.

Open problems

Decompositions of $K_{3n/2,3n/2}$ when

イロト イポト イヨト イヨト

Necessary conditions: $n \equiv 0 \pmod{4}, j \equiv 0 \pmod{2}$

Cichacz, Froncek, Kovar (2009)

 $PR_n(0,j)$ -decomposition of $K_{3n/2,3n/2}$ exists when $n \equiv 0 \pmod{8}$ and $n/\gcd(n,j) \equiv 0 \pmod{2}$.

Cichacz, Froncek, Kovar (2013)

 $PR_n(0,j)$ -decomposition of $K_{3n/2,3n/2}$ exists when $n \equiv j \equiv 0 \pmod{4}$.

Open problems

Decompositions of $K_{3n/2,3n/2}$ when

• $n \equiv 0 \pmod{8}, j \equiv 2 \pmod{4}$ and and $n/\gcd(n, j) \equiv 1 \pmod{2}$

<ロ> (日) (日) (日) (日) (日)

Necessary conditions: $n \equiv 0 \pmod{4}, j \equiv 0 \pmod{2}$

Cichacz, Froncek, Kovar (2009)

 $PR_n(0,j)$ -decomposition of $K_{3n/2,3n/2}$ exists when $n \equiv 0 \pmod{8}$ and $n/\gcd(n,j) \equiv 0 \pmod{2}$.

Cichacz, Froncek, Kovar (2013)

 $PR_n(0,j)$ -decomposition of $K_{3n/2,3n/2}$ exists when $n \equiv j \equiv 0 \pmod{4}$.

Open problems

Decompositions of $K_{3n/2,3n/2}$ when

- $n \equiv 0 \pmod{8}, j \equiv 2 \pmod{4}$ and and $n/\gcd(n, j) \equiv 1 \pmod{2}$
- $n \equiv 4 \pmod{8}, j \equiv 2 \pmod{4}$

イロト イポト イヨト イヨト

Necessary conditions: $n \equiv 0 \pmod{4}, j \equiv 0 \pmod{2}$

Open problems

Decompositions of $K_{3n/2,3n/2}$ when

- $n \equiv 0 \pmod{8}, j \equiv 2 \pmod{4}$ and and $n/\gcd(n, j) \equiv 1 \pmod{2}$
- $n \equiv 4 \pmod{8}, j \equiv 2 \pmod{4}$

イロト 不得下 イヨト イヨト 二日

Necessary conditions: $n \equiv 0 \pmod{4}, j \equiv 0 \pmod{2}$

Open problems

Decompositions of $K_{3n/2,3n/2}$ when

• $n \equiv 0 \pmod{8}, j \equiv 2 \pmod{4}$ and and $n/\gcd(n, j) \equiv 1 \pmod{2}$

• $n \equiv 4 \pmod{8}, j \equiv 2 \pmod{4}$

(日) (四) (王) (王) (王)

Necessary conditions: $n \equiv 0 \pmod{4}, j \equiv 0 \pmod{2}$

Open problems

Decompositions of $K_{3n/2,3n/2}$ when

• $n \equiv 0 \pmod{8}, j \equiv 2 \pmod{4}$ and and $n/\gcd(n, j) \equiv 1 \pmod{2}$

• $n \equiv 4 \pmod{8}, j \equiv 2 \pmod{4}$

Cichacz, Froncek, (June 2014)

 $PR_n(0,j)$ -decomposition of $K_{3n/2,3n/2}$ exists when $n \equiv 0 \pmod{8}$.

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Necessary conditions: $n \equiv 0 \pmod{4}, j \equiv 0 \pmod{2}$

Open problems

Decompositions of $K_{3n/2,3n/2}$ when

• $n \equiv 0 \pmod{8}, j \equiv 2 \pmod{4}$ and and $n/\gcd(n, j) \equiv 1 \pmod{2}$

• $n \equiv 4 \pmod{8}, j \equiv 2 \pmod{4}$

Cichacz, Froncek, (June 2014)

 $PR_n(0,j)$ -decomposition of $K_{3n/2,3n/2}$ exists when $n \equiv 0 \pmod{8}$.

Recall:

Cichacz, Froncek, Kovar (2009) $PR_n(0,j)$ -decomposition of $K_{3n/2,3n/2}$ exists when $n \equiv 0 \pmod{8}$ and $n/\gcd(n,j) \equiv 0 \pmod{2}$.

Cichacz, Froncek, (June 2014)

 $PR_n(0,j)$ -dec. exists when $n \equiv 0 \pmod{8}$.

Cichacz, Froncek, Kovar (2009)

 $PR_n(0,j)$ -dec. exists when $n \equiv 0 \pmod{8}$ and $n/\gcd(n,j) \equiv 0 \pmod{2}$.

★週 ▶ ★ 注 ▶ ★ 注 ▶

Cichacz, Froncek, (June 2014)

 $PR_n(0,j)$ -dec. exists when $n \equiv 0 \pmod{8}$.

Cichacz, Froncek, Kovar (2009)

 $PR_n(0,j)$ -dec. exists when $n \equiv 0 \pmod{8}$ and $n/\gcd(n,j) \equiv 0 \pmod{2}$.

Observation

 $PR_n(0,j)$ is isomorphic to $PR_n(0,-j)$.

- 本間 と えき と えき とうき

Cichacz, Froncek, (June 2014)

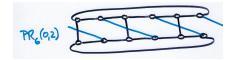
 $PR_n(0,j)$ -dec. exists when $n \equiv 0 \pmod{8}$.

Cichacz, Froncek, Kovar (2009)

 $PR_n(0,j)$ -dec. exists when $n \equiv 0 \pmod{8}$ and $n/\gcd(n,j) \equiv 0 \pmod{2}$.

Observation

 $PR_n(0,j)$ is isomorphic to $PR_n(0,-j)$.



イロト イヨト イヨト イヨト

Cichacz, Froncek, (June 2014)

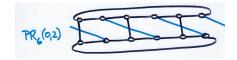
 $PR_n(0,j)$ -dec. exists when $n \equiv 0 \pmod{8}$.

Cichacz, Froncek, Kovar (2009)

 $PR_n(0,j)$ -dec. exists when $n \equiv 0 \pmod{8}$ and $n/\gcd(n,j) \equiv 0 \pmod{2}$.

Observation

 $PR_n(0,j)$ is isomorphic to $PR_n(0,-j)$.



Observation

When $n/\gcd(n,j)\equiv 1 \pmod{2}$, then $n/\gcd(n,-j)\equiv 0 \pmod{2}$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

DF (2015)

 $PR_n(0,0)$ -decomposition of $K_{m,m}$ exists iff $m \equiv 0 \pmod{6}$ and $3n|m^2$.

- 4 同 ト 4 ヨ ト 4 ヨ

DF (2015)

 $PR_n(0,0)$ -decomposition of $K_{m,m}$ exists iff $m \equiv 0 \pmod{6}$ and $3n|m^2$.

How we prove it???

A (10) N (10)

DF (2015)

 $PR_n(0,0)$ -decomposition of $K_{m,m}$ exists iff $m \equiv 0 \pmod{6}$ and $3n|m^2$.

How we prove it???

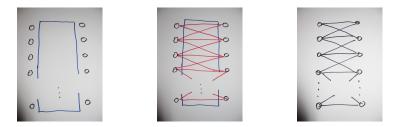
Similar to the speed dating problem

DF (2015)

 $PR_n(0,0)$ -decomposition of $K_{m,m}$ exists iff $m \equiv 0 \pmod{6}$ and $3n|m^2$.

How we prove it???

Similar to the speed dating problem



- ∢ ∃ ▶

DF (2015)

 $PR_n(0,0)$ -decomposition of $K_{m,m}$ exists iff $m \equiv 0 \pmod{6}$ and $3n|m^2$.

How we prove it???

Similar to the speed dating problem

Dalibor Froncek (U of Minnesota Duluth) Decomposition of $K_{n,n}$ into prisms

IWONT 2014 25 / 33

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

DF (2015)

 $PR_n(0,0)$ -decomposition of $K_{m,m}$ exists iff $m \equiv 0 \pmod{6}$ and $3n|m^2$.

- 4 同 ト 4 ヨ ト 4 ヨ

DF (2015)

 $PR_n(0,0)$ -decomposition of $K_{m,m}$ exists iff $m \equiv 0 \pmod{6}$ and $3n|m^2$.

Step 1: Squeeze $K_{m,m}$ into $K_{m/3,m/3}$.

DF (2015)

 $PR_n(0,0)$ -decomposition of $K_{m,m}$ exists iff $m \equiv 0 \pmod{6}$ and $3n|m^2$.

- **Step 1:** Squeeze $K_{m,m}$ into $K_{m/3,m/3}$.
- **Step 2:** Decompose $K_{m/3,m/3}$ into an appropriate graph *H*.

DF (2015) $PR_n(0,0)$ -decomposition of $K_{m,m}$ exists iff $m \equiv 0 \pmod{6}$ and $3n|m^2$.

- **Step 1:** Squeeze $K_{m,m}$ into $K_{m/3,m/3}$.
- **Step 2:** Decompose $K_{m/3,m/3}$ into an appropriate graph *H*.
- **Step 3:** Blow up H into $H[3K_1]$ (and $K_{m/3,m/3}$ back into $K_{m,m}$).

・ 何 ト ・ ヨ ト ・ ヨ ト

DF (2015) $PR_n(0,0)$ -decomposition of $K_{m,m}$ exists iff $m \equiv 0 \pmod{6}$ and $3n|m^2$.

- **Step 1:** Squeeze $K_{m,m}$ into $K_{m/3,m/3}$.
- **Step 2:** Decompose $K_{m/3,m/3}$ into an appropriate graph *H*.
- **Step 3:** Blow up H into $H[3K_1]$ (and $K_{m/3,m/3}$ back into $K_{m,m}$).
- **Step 4:** Decompose $H[3K_1]$ into $PR_n(0,0)$.

DF (2015) $PR_n(0,0)$ -decomposition of $K_{m,m}$ exists iff $m \equiv 0 \pmod{6}$ and $3n|m^2$.

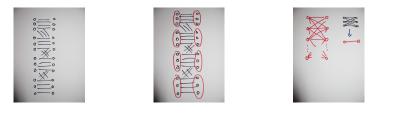
- **Step 1:** Squeeze $K_{m,m}$ into $K_{m/3,m/3}$.
- **Step 2:** Decompose $K_{m/3,m/3}$ into an appropriate graph *H*.
- **Step 3:** Blow up H into $H[3K_1]$ (and $K_{m/3,m/3}$ back into $K_{m,m}$).
- **Step 4:** Decompose $H[3K_1]$ into $PR_n(0,0)$.
- For $m \geq 3n/2$ we have $H \cong C_n$.

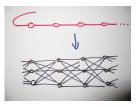
DF (2015) $PR_n(0,0)$ -decomposition of $K_{m,m}$ exists iff $m \equiv 0 \pmod{6}$ and $3n|m^2$.

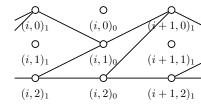
- **Step 1:** Squeeze $K_{m,m}$ into $K_{m/3,m/3}$.
- **Step 2:** Decompose $K_{m/3,m/3}$ into an appropriate graph *H*.
- **Step 3:** Blow up H into $H[3K_1]$ (and $K_{m/3,m/3}$ back into $K_{m,m}$).
- **Step 4:** Decompose $H[3K_1]$ into $PR_n(0,0)$.
- For $m \geq 3n/2$ we have $H \cong C_n$.

For m < 3n/2 we have $H \cong C_{2m/3} \cup M$, where $C_{2m/3}$ is a Hamiltonian cycle in $K_{m/3,m/3}$ and M is a matching of size t such that t|m.

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで







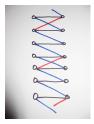
- 4 回 ト - 4 回 ト

Step 2: Decompose $K_{m/3,m/3}$ into an appropriate graph *H*.

Step 2: Decompose $K_{m/3,m/3}$ into an appropriate graph *H*.

→ ∢ ∃ →

Step 2: Decompose $K_{m/3,m/3}$ into an appropriate graph *H*.



DF (June 1, 2014, near Orvieto)

H-decomposition of $K_{m/3,m/3}$ exists whenever $m \equiv 0 \pmod{6}$ and $3n|m^2$.

Step 2: Decompose $K_{m/3,m/3}$ into an appropriate graph *H*.

DF (June 1, 2014, near Orvieto)

H-decomposition of $K_{m/3,m/3}$ exists whenever $m \equiv 0 \pmod{6}$ and $3n|m^2$.

DF (2015)

 $PR_n(0,0)$ -decomposition of $K_{m,m}$ exists iff $m \equiv 0 \pmod{6}$ and $3n|m^2$.

(日) (周) (日) (日)

DF (2015)

 $PR_n(0,0)$ -decomposition of $K_{m,m}$ exists iff $m \equiv 0 \pmod{6}$ and $3n|m^2$.

- **(())) (())) ())**

DF (2015)

 $PR_n(0,0)$ -decomposition of $K_{m,m}$ exists iff $m \equiv 0 \pmod{6}$ and $3n|m^2$.

Corollary (DF and S. Cichacz, June 2014)

 $PR_n(0,2)$ -decomposition of $K_{m,m}$ exists when $m \equiv 0 \pmod{12}$ and $3n|m^2$.

□ ▶ ▲ □ ▶ ▲ □

DF (2015) $PR_n(0,0)$ -decomposition of $K_{m,m}$ exists iff $m \equiv 0 \pmod{6}$ and $3n|m^2$.

Corollary (DF and S. Cichacz, June 2014)

 $PR_n(0,2)$ -decomposition of $K_{m,m}$ exists when $m \equiv 0 \pmod{12}$ and $3n|m^2$.

Step 1: Squeeze $K_{m,m}$ into $K_{m/2,m/2}$. Note that $m/2 \equiv 0 \pmod{6}$.

伺下 イヨト イヨト

DF (2015) $PR_n(0,0)$ -decomposition of $K_{m,m}$ exists iff $m \equiv 0 \pmod{6}$ and $3n|m^2$.

Corollary (DF and S. Cichacz, June 2014)

 $PR_n(0,2)$ -decomposition of $K_{m,m}$ exists when $m \equiv 0 \pmod{12}$ and $3n|m^2$.

Step 1: Squeeze $K_{m,m}$ into $K_{m/2,m/2}$. Note that $m/2 \equiv 0 \pmod{6}$.

Step 2: Decompose $K_{m/2,m/2}$ into $PR_n(0,0)$.

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

DF (2015) $PR_n(0,0)$ -decomposition of $K_{m,m}$ exists iff $m \equiv 0 \pmod{6}$ and $3n|m^2$.

Corollary (DF and S. Cichacz, June 2014)

 $PR_n(0,2)$ -decomposition of $K_{m,m}$ exists when $m \equiv 0 \pmod{12}$ and $3n|m^2$.

Step 1: Squeeze $K_{m,m}$ into $K_{m/2,m/2}$. Note that $m/2 \equiv 0 \pmod{6}$.

Step 2: Decompose $K_{m/2,m/2}$ into $PR_n(0,0)$.

Step 3: Blow up $PR_n(0,0)$ into $PR_n(0,0)[2K_1]$ (and $K_{m/2,m/2}$ into $K_{m,m}$).

イロト 不得下 イヨト イヨト 二日

DF (2015) $PR_n(0,0)$ -decomposition of $K_{m,m}$ exists iff $m \equiv 0 \pmod{6}$ and $3n|m^2$.

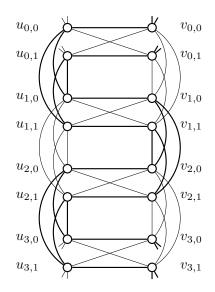
Corollary (DF and S. Cichacz, June 2014) $PR_n(0,2)$ -decomposition of $K_{m,m}$ exists when $m \equiv 0 \pmod{12}$ and $3n|m^2$.

Step 1: Squeeze $K_{m,m}$ into $K_{m/2,m/2}$. Note that $m/2 \equiv 0 \pmod{6}$.

Step 2: Decompose $K_{m/2,m/2}$ into $PR_n(0,0)$.

Step 3: Blow up $PR_n(0,0)$ into $PR_n(0,0)[2K_1]$ (and $K_{m/2,m/2}$ into $K_{m,m}$).

Step 4: Decompose $PR_n(0,0)[2K_1]$ into $PR_n(0,2)$.



三 のへの

イロン イヨン イヨン イヨン

DF (2015)

 $PR_n(0,0)$ -decomposition of $K_{m,m}$ exists iff $m \equiv 0 \pmod{6}$ and $3n|m^2$.

Corollary (DF and S. Cichacz, June 2014)

 $PR_n(0,2)$ -decomposition of $K_{m,m}$ exists when $m \equiv 0 \pmod{12}$ and $3n|m^2$.

過 ト イヨ ト イヨト

DF (2015) $PR_n(0,0)$ -decomposition of $K_{m,m}$ exists iff $m \equiv 0 \pmod{6}$ and $3n|m^2$.

Corollary (DF and S. Cichacz, June 2014)

 $PR_n(0,2)$ -decomposition of $K_{m,m}$ exists when $m \equiv 0 \pmod{12}$ and $3n|m^2$.

Corollary (DF and S. Cichacz, June 2014)

 $PR_n(0,6)$ -decomposition of $K_{m,m}$ exists when $m \equiv 0 \pmod{12}$ and $3n|m^2$.

- 本間 と えき と えき とうき

Dalibor Froncek (U of Minnesota Duluth) Decomposition of $K_{n,n}$ into prisms

IWONT 2014 32 / 33

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 = のへで

Thank you!