A Spectral Characterization of Strongly Distance-Regular Graphs with Diameter Four.

M.A. Fiol

Dep. de Matemàtica Aplicada 4 UPC, BarcelonaTech

> IWONT'14 Bratislava

Outline

Introduction and motivation

Distance-regular and strongly regular graphs The problem Motivation

The main result

Tools A theorem

Examples, consequences, and problems Graphs from symmetric nets

Introduction and motivation

A graph ${\boldsymbol{G}}$ with diameter ${\boldsymbol{d}}$ and distance matrices

$$\boldsymbol{A}_0(=\boldsymbol{I}), \boldsymbol{A}_1(=\boldsymbol{A}), \boldsymbol{A}_2, \dots, \boldsymbol{A}_d,$$

is distance-regular if and only if there exists a sequence of (orthogonal) polynomials $p_0, p_1, p_2, \ldots, p_d$, deg $p_i = i$, such that

$$\boldsymbol{A}_i = p_i(\boldsymbol{A}), \qquad i = 0, 1, \dots, d.$$

A graph G with diameter d and distance matrices

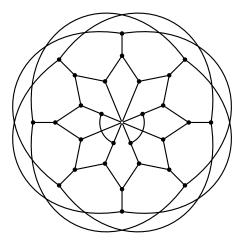
$$\boldsymbol{A}_0(=\boldsymbol{I}), \boldsymbol{A}_1(=\boldsymbol{A}), \boldsymbol{A}_2, \dots, \boldsymbol{A}_d,$$

is distance-regular if and only if there exists a sequence of (orthogonal) polynomials $p_0, p_1, p_2, \ldots, p_d$, deg $p_i = i$, such that

$$\boldsymbol{A}_i = p_i(\boldsymbol{A}), \qquad i = 0, 1, \dots, d.$$

In particular, G (connected) is strongly regular when it is distance-regular with diameter d = 2. (in general, nK_s or $K_{s,...,s}$ are also allowed.)

A distance-regular graph



The Coxeter graph (according to Charles Delorme)

A graph (connected) G is strongly regular if and only if it is regular (a poperty that can be deduced from the spectrum) and it has three distinct eigenvalues.

A strongly distance-regular graph is a distance-regular graph G (of diameter d, say) with the property that its distance-d graph G_d is strongly regular.

(See the blackboard...)

The known examples of strongly distance-regular graphs are:

- ► The strongly regular graphs (since G_d is the complement of G),
- ► The antipodal distance-regular graphs (where G_d is a disjoint union of complete graphs), and
- ► All the distance-regular graphs with d = 3 and third largest eigenvalue λ₂ = −1. (there are infinite families of this type, such as the generalized hexagons and the Brouwer graphs).

Given a distance-regular graph G, decides, from its spectrum,

$$\operatorname{sp} G = \operatorname{sp} \mathbf{A} = \{\lambda_0^{m_0}, \lambda_1^{m_1}, \dots, \lambda_d^{m_d}\},\$$

where

 $\lambda_0 > \lambda_1 > \cdots > \lambda_d,$

and the superscripts stand for the multiplicities $m_i = m(\lambda_i)$, whether or not G is strongly distance-regular. Given a distance-regular graph G, decides, from its spectrum,

$$\operatorname{sp} G = \operatorname{sp} \mathbf{A} = \{\lambda_0^{m_0}, \lambda_1^{m_1}, \dots, \lambda_d^{m_d}\},\$$

where

 $\lambda_0 > \lambda_1 > \cdots > \lambda_d,$

and the superscripts stand for the multiplicities $m_i = m(\lambda_i)$, whether or not G is strongly distance-regular.

Is the spectrum enough?

Given a distance-regular graph G, decides, from its spectrum,

$$\operatorname{sp} G = \operatorname{sp} \mathbf{A} = \{\lambda_0^{m_0}, \lambda_1^{m_1}, \dots, \lambda_d^{m_d}\},\$$

where

 $\lambda_0 > \lambda_1 > \cdots > \lambda_d,$

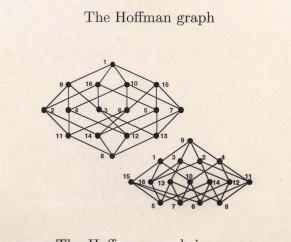
and the superscripts stand for the multiplicities $m_i = m(\lambda_i)$, whether or not G is strongly distance-regular.

Is the spectrum enough?

NOT!

The Hoffman graph ${\cal H}$

For instance



• The Hoffman graph is cospectral with the hypercube Q_4 , but it is not distance-regular

Why do we need such a characterization?

Why do we need such a characterization?

Solve the (open) problem of deciding whether or not the above known families of strongly distance-regular graphs exhaust all the possibilities.

Here we prove that a distance-regular graph G with five distinct eigenvalues $\lambda_0 > \lambda_1 > \cdots > \lambda_4$ (the case of diameter four) is strongly distance regular if and only an equality involving them, and the intersection parameters a_1 or b_1 , is satisfied.

Here we prove that a distance-regular graph G with five distinct eigenvalues $\lambda_0 > \lambda_1 > \cdots > \lambda_4$ (the case of diameter four) is strongly distance regular if and only an equality involving them, and the intersection parameters a_1 or b_1 , is satisfied. Then, as a consequence, it is shown that all bipartite strongly distance-regular graphs with such a diameter are antipodal.

The main result

A scalar product:

$$\langle p, q \rangle_G = \frac{1}{n} \operatorname{tr}(p(\boldsymbol{A})q(\boldsymbol{A})) = \frac{1}{n} \sum_{i=0}^d m_i p(\lambda_i) q(\lambda_i), \qquad p, q \in \mathbb{R}_d[x],$$
(1)

A basic result:

Lemma

Let G be a distance-regular graph with spectrum sp $G = \{\lambda_0, \lambda_1^{m_1}, \dots, \lambda_d^{m_d}\}$, where $\lambda_0 > \lambda_1 > \dots > \lambda_d$. Then, (a) G is r-antipodal if and only if

$$m_i = \frac{\pi_0}{\pi_i}$$
 (*i* even), $m_i = (r-1)\frac{\pi_0}{\pi_i}$ (*i* odd).

(b) G is strongly distance-regular if and only if, for some positive constants α, β ,

 $m_i \pi_i = \alpha$ (*i* odd), $m_i \pi_i = \beta$ (*i* even, $i \neq 0$).

Theorem

Let G be a distance-regular graph with n vertices, diameter d = 4, and distinct eigenvalues $\lambda_0(=k) > \lambda_1 > \cdots > \lambda_4$. Then G is strongly distance-regular if and only if

$$(1+\lambda_1)(1+\lambda_3) = (1+\lambda_2)(1+\lambda_4) = -b_1.$$
 (2)

Moreover, in this case, G is antipodal if and only if either,

$$\lambda_1 \lambda_3 = -k, \quad \text{or} \quad \lambda_1 + \lambda_3 = a_1$$
 (3)

Notice first that the multiplicities $m_0(=1), m_1, \ldots, m_4$, satisfy the following equations:

$$\sum_{i=0}^{4} m_i = n, \quad \sum_{i=0}^{4} m_i \lambda_i = 0, \quad \sum_{i=0}^{4} m_i \lambda_i^2 = nk, \quad \sum_{i=0}^{4} m_i \lambda_i^3 = nka_1,$$

or, in terms of the scalar product (1),

$$\langle 1,1 \rangle_G = 1, \quad \langle x,1 \rangle_G = 0, \quad \langle x^2,1 \rangle_G = k, \quad \langle x^3,1 \rangle_G = ka_1.$$
 (4)

Examples, consequences, and problems

For the case of bipartite graphs, the conditions in (3) clearly hold since $\lambda_3 = -\lambda_1$ and $a_1 = 0$. Thus,

Every bipartite strongly distance-regular graph is antipodal.

Besides, the condition (2) turns to be very simple:

Corollary

A bipartite distance-regular graph G with diameter d = 4 is strongly distance-regular if and only if $\lambda_1 = \sqrt{k}$. Then, these graphs have spectrum

$$\{k^1, \sqrt{k}^{n/2-k}, 0^{2k-2}, -\sqrt{k}^{n/2-k}, -k^1\}$$

and, in fact, they constitute a well known infinite family (see Brouwer, Cohen and Neumaier (1989): With $n = 2m^2\mu$ and $k = m\mu$, they are precisely the incidence graphs of symmetric (m, μ) -nets, with intersection array

$$\{k, k-1, k-\mu, 1; 1, \mu, k-1, k\}.$$

Looking at the table of known (or feasible) distance-regular graphs, it turns out that:

- Primitive graphs: none
- Antipodal (but not bipartite) graphs: all
- Antipodal bipartite graphs: the family presented

Thus,

Looking at the table of known (or feasible) distance-regular graphs, it turns out that:

- Primitive graphs: none
- Antipodal (but not bipartite) graphs: all
- ► Antipodal bipartite graphs: the family presented Thus.

All the strongly distance-regular graphs with diameter four are antipodal.

Looking at the table of known (or feasible) distance-regular graphs, it turns out that:

- Primitive graphs: none
- Antipodal (but not bipartite) graphs: all
- ► Antipodal bipartite graphs: the family presented Thus,

All the strongly distance-regular graphs with diameter four are antipodal.

Are the conditions (2) and (3) somehow related?

Many thanks

thanks th

d'akujem d'akujem.....

thanks th

d'akujem d'akujem..... (to be continued)