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Introduction and motivation
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A known characterization

A graph G with diameter d and distance matrices

A0(= I),A1(= A),A2, . . . ,Ad,

is distance-regular if and only if there exists a sequence of
(orthogonal) polynomials p0, p1, p2, . . . , pd, deg pi = i, such that

Ai = pi(A), i = 0, 1, . . . , d.

In particular, G (connected) is strongly regular when it is
distance-regular with diameter d = 2. (in general, nKs or Ks,...,s

are also allowed.)
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A distance-regular graph

The Coxeter graph (according to Charles Delorme)
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A spectral characterization

A graph (connected) G is strongly regular if and only if it is regular
(a poperty that can be deduced from the spectrum) and it has
three distinct eigenvalues.
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Strongly distance-regular graphs

A strongly distance-regular graph is a distance-regular graph G (of
diameter d, say) with the property that its distance-d graph Gd is
strongly regular.

(See the blackboard...)
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Examples

The known examples of strongly distance-regular graphs are:

I The strongly regular graphs (since Gd is the complement of
G),

I The antipodal distance-regular graphs (where Gd is a disjoint
union of complete graphs), and

I All the distance-regular graphs with d = 3 and third largest
eigenvalue λ2 = −1. (there are infinite families of this type,
such as the generalized hexagons and the Brouwer graphs).
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The problem

Given a distance-regular graph G, decides, from its spectrum,

spG = spA = {λm0
0 , λm1

1 , . . . , λmd
d },

where

λ0 > λ1 > · · · > λd,

and the superscripts stand for the multiplicities mi = m(λi),
whether or not G is strongly distance-regular.

Is the spectrum enough?

NOT!
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The Hoffman graph H

For instance
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An open problem

Why do we need such a characterization?

Solve the (open) problem of deciding whether or not the above
known families of strongly distance-regular graphs exhaust all the
possibilities.
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One step in this direction

Here we prove that a distance-regular graph G with five distinct
eigenvalues λ0 > λ1 > · · · > λ4 (the case of diameter four) is
strongly distance regular if and only an equality involving them,
and the intersection parameters a1 or b1, is satisfied.

Then, as a
consequence, it is shown that all bipartite strongly distance-regular
graphs with such a diameter are antipodal.
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The main result
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Some tools

A scalar product:

〈p, q〉G =
1

n
tr(p(A)q(A)) =

1

n

d∑
i=0

mip(λi)q(λi), p, q ∈ Rd[x],

(1)
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A basic result:

Lemma

Let G be a distance-regular graph with spectrum
spG = {λ0, λm1

1 , . . . , λmd
d }, where λ0 > λ1 > · · · > λd. Then,

(a) G is r-antipodal if and only if

mi =
π0
πi

(i even), mi = (r − 1)
π0
πi

(i odd).

(b) G is strongly distance-regular if and only if, for some positive
constants α, β,

miπi = α (i odd), miπi = β (i even, i 6= 0).
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Theorem

Let G be a distance-regular graph with n vertices, diameter d = 4,
and distinct eigenvalues λ0(= k) > λ1 > · · · > λ4. Then G is
strongly distance-regular if and only if

(1 + λ1)(1 + λ3) = (1 + λ2)(1 + λ4) = −b1. (2)

Moreover, in this case, G is antipodal if and only if either,

λ1λ3 = −k, or λ1 + λ3 = a1 (3)
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Some useful facts in the proof

Notice first that the multiplicities m0(= 1),m1, . . . ,m4, satisfy the
following equations:

4∑
i=0

mi = n,

4∑
i=0

miλi = 0,

4∑
i=0

miλ
2
i = nk,

4∑
i=0

miλ
3
i = nka1,

or, in terms of the scalar product (1),

〈1, 1〉G = 1, 〈x, 1〉G = 0, 〈x2, 1〉G = k, 〈x3, 1〉G = ka1. (4)
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Examples, consequences, and problems
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The case of bipartite graphs

For the case of bipartite graphs, the conditions in (3) clearly hold
since λ3 = −λ1 and a1 = 0. Thus,

Every bipartite strongly distance-regular graph is antipodal.

Besides, the condition (2) turns to be very simple:

Corollary

A bipartite distance-regular graph G with diameter d = 4 is
strongly distance-regular if and only if λ1 =

√
k.
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The cases i = 0, 1

Then, these graphs have spectrum

{k1,
√
k
n/2−k

, 02k−2,−
√
k
n/2−k

,−k1}

and, in fact, they constitute a well known infinite family (see
Brouwer, Cohen and Neumaier (1989): With n = 2m2µ and
k = mµ, they are precisely the incidence graphs of symmetric
(m,µ)-nets, with intersection array

{k, k − 1, k − µ, 1; 1, µ, k − 1, k}.
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Strongly distance-regular graphs with d = 4

Looking at the table of known (or feasible) distance-regular graphs,
it turns out that:

I Primitive graphs: none

I Antipodal (but not bipartite) graphs: all

I Antipodal bipartite graphs: the family presented

Thus,

All the strongly distance-regular graphs with diameter four are
antipodal.

Are the conditions (2) and (3) somehow related?
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Many thanks
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