On the Wiener index for iterated line graphs of trees

Martin Knor

Slovak University of Technology in Bratislava, Bratislava, Slovakia

Joint work with Riste Škrekovski, Primož Potočnik and Martin Mačaj

Let G be a graph. The sum of all distances in G is called the Wiener index of G and it is denoted by W(G). The *i*-iterated line graph of G, $L^i(G)$, is $L^i(G) = L(L^{i-1}(G))$, where L is the line-graph operator and $L^0(G) = G$. Let T denote a tree. It is known that $W(L(T)) \neq W(T)$, while $W(L^2(T)) = W(T)$ has infinitely many solutions. Dobrynin and Melnikov conjectured that $W(L^i(T)) = W(T)$ has no solution if $i \geq 3$. We disproved this conjecture and we characterized all *i*'s and T's, $i \geq 3$, satisfying $W(L^i(T)) = W(T)$.