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Introduction

• G = G(V,E): simple, bipartite, planar, maximal graph.

• A maximal planar bipartite graph divides the plane only into
quadrangles (Ringel, 1993).

• |V | − |E|+ |F | = 2 (Euler characteristic),
|E| = 2n− 4,
|F | = n− 2.

• (∆, D) problem: It consists of finding the maximum possible
number of vertices n = |V | in a graph G with maximum degree ∆
and diameter D.
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The (∆, 2) and (∆, 3) problems in maximal planar
bipartite graphs

• The (∆, 2) problem:
Proposition 1. Consider a maximal planar bipartite graph G with
diameter D = 2, maximum degree ∆ and maximum number of
vertices n, then n = ∆ + 2. The only graph that satisfies this
equation is the complete bipartite graph K2,∆.

• The (∆, 3) problem:
Theorem 2. Consider a maximal planar bipartite graph G with
diameter D = 3, maximum degree ∆ and maximum number of
vertices n, then

n =

{
3∆− 1 if ∆ is odd,
3∆− 2 if ∆ is even.
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The (∆, D) problem in maximal planar bipartite graphs:
An upper bound

• Theorem [Lipton, Tarjan, 1979]. Let G be a planar graph on n
vertices containing a spanning tree of radius r. Then V (G) can be
partitioned into sets A,B and C such that no edges join vertices in
A with vertices in B, |A| ≤ 2

3n, |B| ≤ 2
3n, and |C| ≤ 2r + 1.

A C B

Figure: Sets A, B and C

• Theorem [Fellows, Hell, Seyffarth, 1995]. Consider a maximal
planar graph G with diameter D, maximum degree ∆ and maximum
number of vertices n, then

n = 3(2D + 1)(2∆bD/2c + 1).
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The (∆, D) problem in maximal planar bipartite graphs:
An upper bound

Theorem 3. Let G be a maximal planar bipartite graph on n vertices
with maximum degree ∆ ≥ 4 and diameter D ≥ 4. Then,

• If ∆ = 4: n ≤ 6(2D + 1)
(⌊

D
2

⌋2
+
⌊
D
2

⌋
+ 1
)

.

• If ∆ > 4:

n ≤ 3(2D + 1)

[√
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)bD/2c+1
]

+ 2

]
,

which is approximately 3(2D + 1)
[
(∆− 2)

bD/2c
+ 1
]

if ∆ is

sufficiently large.
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The (∆, D) problem in maximal planar bipartite graphs:
An upper bound

Proof [sketch].

• We compute from each vertex of C the maximum possible number
of vertices at distance at most bD/2c.

• We build a subgraph adding vertices at distance i from a given
(root) vertex of C in step i (0 ≤ i ≤ bD/2c), to obtain an almost
maximal (its interior faces are quadrangles) planar bipartite graph .

Figure: An almost maximal subgraph for ∆ = 4
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The (∆, D) problem in maximal planar bipartite graphs:
An upper bound

Proof [sketch].

• Let ni be the number of vertices at distance i (for 0 ≤ i ≤ bD/2c).
For i ≥ 3, ni follows the recurrence

ni = (∆− 2)ni−1 − ni−2.

• We use the generating function G(z) = ∆
α−β

(
α
z−α −

β
z−β

)
, where

α = 1
2 (∆− 2 +

√
∆(∆− 4)) and β = 1

2 (∆− 2−
√

∆(∆− 4)) for
∆ > 4.

• We obtain for ∆ > 4

ni = ∆√
∆(∆−4)

[(
∆−2+

√
∆(∆−4)

2

)i
−
(

∆−2−
√

∆(∆−4)

2

)i]
.

• The total number of vertices n =

bD/2c∑
i=0

ni is obtained as the

difference of two geometric series.
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The (∆, D) problem in maximal planar bipartite graphs:
An upper bound

• Fellows, Hell, Seyffarth’s bound on n for maximal planar graphs:

n ≤ 3(2D + 1)(2∆bD/2c + 1).

• D., Huemer, Salas’s bound on n for maximal planar bipartite graphs:

n ≤ 3(2D + 1)
[
(∆− 2)

bD/2c
+ 1
]
.
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The (∆, D) problem in maximal planar bipartite graphs:
An upper bound
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Figure: Plot of the log (base 10) of the number of vertices n with respect to
the diameter D (black points: D., Huemer, Salas’s bound; grey points: Fellows,
Hell and Seyffarth’s bound), for ∆ = 5 and 4 ≤ D ≤ 42



The (∆, D) problem in maximal planar bipartite graphs:
An alternative upper bound

• Ball (of center v ∈ G and radius k): it consists of all vertices of G
at distance at most k from v.

• Theorem [Chepoi, Estellon, and Vaxès]. There exists a constant
C such that any planar graph G of diameter D ≤ 2k can be covered
with at most C balls of radius k.

• Lower bound: Gavoille, Peleg, Raspaud, and Sopena presented a
family of planar graphs with C ≥ 4.
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The (∆, D) problem in maximal planar bipartite graphs:
An alternative upper bound

• Corollary 4. There exists a constant C such that each maximal
planar bipartite graph G with maximum degree ∆ and diameter D
has at most n ≤ C(∆− 2)dD/2e vertices.

• For the case D odd and ∆ ≥ D: We use the N -separator theorem
by Tishchenko.

R1

R2

R3

R4R5

Figure: A 5-separator divides the plane into five regions

• Theorem 5. There exists a constant C such that each maximal
planar bipartite graph G with maximum degree ∆ and odd diameter
D, for ∆ ≥ D, has at most n ≤ C(∆− 2)bD/2c vertices.
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The (∆, D) problem in maximal planar bipartite graphs: A
lower bound

• Theorem 6. (a) For any diameter D = 2k (k ≥ 1) and maximum
degree ∆ (∆ ≥ 5), there exists a maximal planar bipartite graph
G∆,D whose number of vertices n(G∆,D) is

∆
(

∆− 2 +
√

∆(∆− 4)
)k

+ ∆
(

∆− 2−
√

∆(∆− 4)
)k

(∆− 4)2k
− 8

∆− 4
,

which is approximately (∆− 2)k, for ∆ and D sufficiently large.



The (∆, D) problem in maximal planar bipartite graphs: A
lower bound

Figure: The superior half of a maximal planar bipartite graph drawn on a
sphere for ∆ = 4



The (∆, D) problem in maximal planar bipartite graphs: A
lower bound

• Theorem 6. (b) For any diameter D = 2k + 1 (k ≥ 1) and odd
maximum degree ∆ (∆ ≥ 9), there exists a maximal planar bipartite
graph G∆,D whose number of vertices n(G∆,D) is

n(G∆,3) = 3∆− 1 for D = 3,
n(G∆,5) = 3∆2 − 21∆ + 26 for D = 5,

n(G∆,2k+1) = 3∆2 − 21∆ + 26 + 3(∆−7)(∆−2)2((∆−3)k−2−1)
(∆−4) for D = 2k + 1

and k > 2,

which is approximately 3(∆− 3)k, for ∆ and D sufficiently large.



The (∆, D) problem in maximal planar bipartite graphs: A
lower bound

• Theorem 6. (c) For any diameter D = 2k + 1 (k ≥ 1) and even
maximum degree ∆ (∆ ≥ 10), there exists a maximal planar
bipartite graph G∆,D whose number of vertices n(G∆,D) is

n(G∆,3) = 3∆− 2 for D = 3,
n(G∆,5) = 3∆2 − 22∆ + 26 for D = 5,

n(G∆,2k+1) = 3∆2 − 22∆ + 26 + (3∆−22)(∆−2)2((∆−3)k−2−1)
(∆−4) for D = 2k + 1

and k > 2,

which is approximately 3(∆− 3)k, for ∆ and D sufficiently large.



The (∆, D) problem in maximal planar bipartite graphs: A
lower bound

• Iterative construction for Theorem 6. (b), (c):

Figure: The iterative construction
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