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Introduction

e G =G(V,E): simple, bipartite, planar, maximal graph.

e A maximal planar bipartite graph divides the plane only into
quadrangles (Ringel, 1993).

e |V|—|E| + |F| =2 (Euler characteristic),
|B| =204,
|F|=n—2.
e (A, D) problem: It consists of finding the maximum possible

number of vertices n = |V| in a graph G with maximum degree A
and diameter D.
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The (A, 2) and (A, 3) problems in maximal planar
bipartite graphs

e The (A, 2) problem:
Proposition 1. Consider a maximal planar bipartite graph G with
diameter D = 2, maximum degree A and maximum number of
vertices n, then n = A + 2. The only graph that satisfies this
equation is the complete bipartite graph Kz A.



The (A,2) and (A, 3) problems in maximal planar
bipartite graphs

e The (A.2) problem:
Proposition 1. Consider a maximal planar bipartite graph G with
diameter D = 2, maximum degree A and maximum number of
vertices n, then n = A + 2. The only graph that satisfies this
equation is the complete bipartite graph Kz A.

e The (A, 3) problem:
Theorem 2. Consider a maximal planar bipartite graph G with
diameter D = 3, maximum degree A and maximum number of
vertices n, then

[ 3A—-1 if Alisodd,
"= 3A-2 if Ais even.
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The (A, D) problem in maximal planar bipartite graphs:
An upper bound

e Theorem [Lipton, Tarjan, 1979]. Let G be a planar graph on n
vertices containing a spanning tree of radius . Then V(G) can be
partitioned into sets A, B and C such that no edges join vertices in
A with vertices in B, |A| < 2n, |B| < 2n, and |C| < 2r + 1.
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The in maximal planar bipartite graphs:
An upper bound

e Theorem [Lipton, Tarjan, 1979]. Let G be a planar graph on n
vertices containing a spanning tree of radius . Then V(G) can be
partitioned into sets A, B and C such that no edges join vertices in
A with vertices in B, |A| < 2n, |B| < 2n, and |C| < 2r + 1.

A C B
Figure: Sets A, B and C

e Theorem [Fellows, Hell, Seyffarth, 1995]. Consider a maximal
planar graph G with diameter D, maximum degree A and maximum
number of vertices n, then

n=3(2D +1)(2AP/2 1 1),



The (A, D) problem in maximal planar bipartite graphs:
An upper bound

Theorem 3. Let G be a maximal planar bipartite graph on n vertices
with maximum degree A > 4 and diameter D > 4. Then,

e lfA=4n<6D+1)([2)"+]2]+1).



The (A, D) problem in maximal planar bipartite graphs:
An upper bound

Theorem 3. Let G be a maximal planar bipartite graph on n vertices
with maximum degree A > 4 and diameter D > 4. Then,

e lfA=4n<6D+1)([2)"+]2]+1).

o If A >4:
VA(A—4) A 2—,/A(A —4) Lb/2)+1
n <3(2D+1) YA (A—4+\/AA-4))| —5——
—2/A(A —4)

+ 2

[D/2]+1
(- 8 AT (220EET)

which is approximately 3(2D + 1) [(A —2) Lbr2l 4 1] if Ais
sufficiently large.
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The (A, D) problem in maximal planar bipartite graphs:
An upper bound
Proof [sketch].

e We compute from each vertex of C' the maximum possible number
of vertices at distance at most |D/2].

e We build a subgraph adding vertices at distance ¢ from a given
(root) vertex of C'in step i (0 < i < |D/2]), to obtain an almost
maximal (its interior faces are quadrangles) planar bipartite graph .

Figure: An almost maximal subgraph for A =4
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Proof [sketch].
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For i > 3, n; follows the recurrence

n; = (A — 2)7’Li_1 — N;—2.
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An upper bound
Proof [sketch].

e Let n; be the number of vertices at distance ¢ (for 0 < i < [D/2]).
For i > 3, n; follows the recurrence

n; = (A — 2)’[’Li_1 — N;—2.

e We use the generating function G(z) = ﬁ (zf‘a - Zfﬁ) where
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The in maximal planar bipartite graphs:

An upper bound
Proof [sketch].

e Let n; be the number of vertices at distance ¢ (for 0 < i < [D/2]).
For i > 3, n; follows the recurrence

n; = (A — 2)’[’Li_1 — N;—2.

e We use the generating function G(z) = ﬁ (zf‘a - Zfﬁ) where
a=3(A=2+/A(A—-4)and B=3(A—2—/A(A —4)) for
A >4

e We obtain for A > 4

e (e (s

RV 2
LD/2]
e The total number of vertices n = Z n; is obtained as the
i=0

difference of two geometric series.
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The (A, D) problem in maximal planar bipartite graphs:
An upper bound

o Fellows, Hell, Seyffarth’s bound on n for maximal planar graphs:

n < 3(2D + 1)(2AP/21 1 1),

e D., Huemer, Salas's bound on n for maximal planar bipartite graphs:

n<3(2D+1) [(A—Q)LD/QJ +1].



The (A, D) problem in maximal planar bipartite graphs:
An upper bound
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Figure: Plot of the log (base 10) of the number of vertices n with respect to
the diameter D (black points: D., Huemer, Salas’s bound; grey points: Fellows,
Hell and Seyffarth’'s bound), for A =5 and 4 < D <42



The (A, D) problem in maximal planar bipartite graphs:
An alternative upper bound

e Ball (of center v € G and radius k): it consists of all vertices of G
at distance at most k from v.
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e Ball (of center v € G and radius k): it consists of all vertices of G
at distance at most k from v.

e Theorem [Chepoi, Estellon, and Vaxeés]. There exists a constant
C such that any planar graph G of diameter D < 2k can be covered
with at most C' balls of radius k.

e Lower bound: Gavoille, Peleg, Raspaud, and Sopena presented a
family of planar graphs with C' > 4.
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by Tishchenko.
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The (A, D) problem in maximal planar bipartite graphs:
An alternative upper bound

e Corollary 4. There exists a constant C' such that each maximal
planar bipartite graph G with maximum degree A and diameter D
has at most n < C(A — 2)[P/21 vertices.

e For the case D odd and A > D: We use the N-separator theorem
by Tishchenko.

Figure: A 5-separator divides the plane into five regions

e Theorem 5. There exists a constant C such that each maximal
planar bipartite graph G with maximum degree A and odd diameter
D, for A > D, has at most n < C(A — 2)LP/2] vertices.



The (A, D) problem in maximal planar bipartite graphs:
lower bound

e Theorem 6. (a) For any diameter D = 2k (k > 1) and maximum
degree A (A > 5), there exists a maximal planar bipartite graph
Ga,p whose number of vertices n(Ga p) is

A(A—2+Wﬂﬂﬁiigk+A(A—2— zMA—4Dk N

(A —4)2k CA—4

which is approximately (A — 2)¥, for A and D sufficiently large.



The (A, D) problem in maximal planar bipartite graphs: A
lower bound

Figure: The superior half of a maximal planar bipartite graph drawn on a
sphere for A =4



The (A, D) problem in maximal planar bipartite graphs: A
lower bound

e Theorem 6. (b) For any diameter D = 2k + 1 (k > 1) and odd
maximum degree A (A > 9), there exists a maximal planar bipartite
graph Ga,p whose number of vertices n(Ga p) is

n(Gag) =3A—1 for D =3,

n(Ga) = 3A% — 21A + 26 for D=5,

n(Ga2kt1) = 3A% — 21A + 26 + 3(A_7)(A_(2327(S§_3)k72_1) for D=2k+1
and k > 2,

which is approximately 3(A — 3)*, for A and D sufficiently large.



The (A, D) problem in maximal planar bipartite graphs: A
lower bound

e Theorem 6. (c) For any diameter D = 2k + 1 (k > 1) and even
maximum degree A (A > 10), there exists a maximal planar
bipartite graph Ga,p whose number of vertices n(Ga p) is

n(GA’g) =3A -2

for D = 3,
n(Ga) = 3A% — 22A + 26 for D =5,
_ _9)2 _ k—2_
n(Ga k1) = 3A% — 22A + 26 + (3A-22)(4 (Z)f(i)A 3) D for D=2k+1
and k > 2,

which is approximately 3(A — 3)*, for A and D sufficiently large.



The (A, D) problem in maximal planar bipartite graphs: A
lower bound

e lterative construction for Theorem 6. (b), (¢):

A\

\'4

Figure: The iterative construction
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Thank you for your attention.



