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Simple examples ...

1 From any 3 persons there are always 2 persons with the
same gender.

2 From any 6 persons, there are at least 3 persons know each
others or 3 persons do not know each others. The number
6 is the least integer.

3 From any five points in general position in the plane, there
are four points forming a convex 4-gon. The number 5 is
the smallest.

4 From any 9 persons, there are at least 3 persons know each
others or 4 persons do not know each others. The number
9 is the least integer.

5 In any ordering of the first 101 positive integers, there are
always 11 of them forming an increasing or decreasing
sequence.
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Simple examples ...

However, if you order the first 100 positive integers in the
following way then there is no increasing nor decreasing
subsequence with 11 elements.

91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90
71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70
51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50
31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30
11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
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Theme of Ramsey Theory

• Ramsey theory was initially studied in the context of the
problem of finding a regular procedure to determine the
consistency of any given logical formula (1928).

• The objective was to give a decision procedure for the
sentences of propositional logic.

• Complete disorder is impossible is the theme of Ramsey
Theory, as stated by Theodore S. Motzkin.

• A non-technical interpretation of Ramsey Theory:
Every sufficiently large structure, regardless of how
disorderly it may appear to be, contains an orderly
substructure of any prescribed size.

• The word "Ramsey" is due to Frank Plumpton Ramsey, a
student of Bertrand Russell, G.E. Moore, Ludwig
Wittgenstein, and John Maynard Keynes.
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Ramsey Theory

Infinite version. For any positive integers k and r , if the
collection of all r -element subsets of an infinite set S is colored
in k colors, then S contains an infinite subset S1 such that all
r -element subsets of S1 are assigned the same color.

Finite version. For any positive integers r,n, and k there is an
integer m0 = R(r,n,k) such that if m ≥ m0 and the collection of
all r -element subsets of an m-element set Sm is colored in k
colors, then Sm contains an n-element subset Sn such that all
r -element subsets of Sn are assigned the same color.

The Ramsey theory becames famous after
Paul Erdös and George Szekeres (1935)
applied it in graph theory.
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Ramsey Numbers (1928)

Problem 2.1
For integers n and m, find the smallest integer r := R(n,m)
such that in any 2-coloring (red or blue) on the edges of the
complete graph Kr on r vertices, there exists either a
monochromatic complete graph on n or m vertices. (F.P.
Ramsey, 1928)

R(3,3) = 6.
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Basic property

Ramsey Number R(s, t ) has the following properties.

Trivially, we have:
• Symmetry: R(s, t ) = R(t , s), for all s, t ≥ 2.
• R(s,2) = R(2, s) = s.

Theorem 2.2
The function R(s, t ) is finite for all s, t ≥ 2. If s > 2, t > 2, then:

• R(s, t ) ≤ R(s −1, t )+R(s, t −1), and

• R(s, t ) ≤
(

s + t −2
s −1

)
.
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The Proof of Theorem 2.2

• R(s, t ) ≤ R(s −1, t )+R(s, t −1).
Let n = R(s −1, t )+R(s, t −1).
Consider any red-blue coloring on the edges of Kn . Since
the degree of vertex x: d(x) = R(s −1, t )+R(s, t −1)−1,
then there are at least n1 = R(s −1, t ) red edges or
n2 = R(s, t −1) blue edges incident to x.
In any case, we will have a red Ks or a blue Kt .

• By induction on s + t .
If s = 2 or t = 2, it holds. Assume it holds for
2 ≤ s∗+ t∗ < s + t . Then,

• R(s, t ) ≤ R(s −1, t )+R(s, t −1)

• R(s, t ) ≤
(

s + t −3
s −2

)
+

(
s + t −3

s −1

)
=

(
s + t −2

s −1

)
.
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R(3,4) = 9.

Theorem 2.3
R(3,4) = 9.

Proof.
Consider any 2-coloring on K9. Consider the induced subgraph
by red edges. Then, this subgraph cannot be 3-regular.
Therefore, there are two possibilities:

• Case 1. ∃v ∈V (K9) incident with 4 red edges.
• Case 2. ∃v ∈V (K9) incident with 6 blue edges.

In any case, there will be a red K3 or a blue K4.
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Nine Ramsey Numbers

Finding the exact value of R(n,m) has received a lot of
attention. However, the results are still far from satisfactory.

• Greenwood & Gleason (1955):
R(3,3) = 6,R(3,4) = 9,R(3,5) = 14, R(4,4) = 18.

• Kéry (1964): R(3,6) = 18.
• Kalbfleisch (1965): R(3,7) = 23

• Grienstead & Roberts (1982): R(3,8) = 28; R(3,9) = 36.

• McKay & Radziszowski (1995): R(4,5) = 25.
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Diagonal Ramsey Numbers

Joel Spencer, 1994: "Erdös asks us to imagine an alien force,
vastly more powerful than us, landing on Earth and demanding
the value of R(5,5) or they will destroy our planet. In that case,
he claims, we should marshal all our computers and all our
mathematicians and attempt to find the value. But suppose,
instead, that they ask for R(6,6). In that case, he believes, we
should attempt to destroy the aliens."

• R(t , t ) is greatest interest since it is the hardest to estimate.

R(t , t ) ≤
(

2t −2
t −1

)
≤ 22t−2p

t
.

• It is hardly to improve this bound. The best improvement
was due to Thomason (1988):
R(t , t ) ≤ 22t

t , if t is big.
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Diagonal Ramsey Numbers

• R(t , t ) grows exponentially: R(t , t ) ≥ 2t/2.
• It is widely believed that there is a constant c, perhaps
even c = 1, such that:

R(t , t ) = 2(c+o(1))t ,

but this is very far from being proved.
• By replacing the first two colors by a new color (in a

k-coloring Rk (t1, t2, · · · , tk )), we have:

Rk (t1, t2, · · · , tk ) ≤ Rk−1(R(t1, t2), t3, · · · , tk ).
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Applications of Ramsey numbers

1 In the fields: number theory, harmonic analysis, algebra,
computational geometry, topology, set theory, logic,
ergodic theory, information theory and computer science.

2 In particular, in information theory and computer science:
it is used for coding, parallel and distributed computing,
boolean function computation, automated theorem,
approximation algorithm and complexity.

Please refer to:
Vera Rosta, Ramsey Theory Applications, Electronic Journal of
Combinatorics, Dec 2004, #DS13.
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The Generalization of Ramsey Theory
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Definition of Graph Ramsey Numbers

Graph Ramsey theory has grown enormously in the last five
decades to become presently one of the most active areas in
Ramsey theory.

Definition. Let G and H be two graphs. The Ramsey number
R(G , H) is the smallest integer r such that in any red-blue
coloring on the edges of Kr on r vertices, there exists either a
red G or a blue H as a subgraph.

This definition is equivalent to the following:

Definition. Let G and H be two graphs. The Ramsey number
R(G , H) is the smallest integer r such that every graph F of
order r will satisfy the following condition: either F ⊇G or
F ⊇ H .
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Chvátal-Harary bound

Let χ(H) be the chromatic number of graph H , and
c(G) be the order of the largest component of G.

Chvátal and Harary (1972):

R(G , H) ≥ (χ(H)−1)(c(G)−1)+1,

since F = (χ(H)−1)K(c(G)−1) 6⊇G and F 6⊇ H .
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Examples ...

Example 1. Show that R(P3,C3) = 5.

Proof.
• Consider F = 2K2. Then, F 6⊇ P3 and F =C4 6⊇C3.
So, R(P3,C3) ≥ 5.

• To show the upper bound, consider any 2-coloring on the
edges of K5 so that no red P3. This means that there are
at most two red edges. This implies that there exists a
blue C3 in K5. So, R(P3,C3) ≤ 5.

• Thus, R(P3,C3) = 5.
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Examples

Example 2. Show R(K1,3,C3) = 7.

Proof.
• Consider F = 2K3. Then, F 6⊇ K1,3 and F = K3,3 6⊇C3.
So, R(K1,3,C3) ≥ 7.

• To show the upper bound, consider any 2-coloring on the
edges of K7. If there is no blue C3 then we have a red C3

(by R(3,3) = 6). But if we have a red C3 then each vertex
v in this C3 is adjacent to the four remaining vertices with
blue edges. This forces either a red K1,3 or a blue C3. So,
R(K1,3,C3) ≤ 7.

• Thus, R(K1,3,C3) = 7.
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Path-Path & Cycle-cycle Ramsey

The determination of Ramsey numbers R(G , H) has been
studied for various combinations of graphs G and H .

• R(Pn ,Pm) = n +bm/2c−1, n ≥ m ≥ 2.
(L. Geréncser, A. Gyárfás 1967)

• R(Cn ,Cm) =

2n −1,
for 3 ≤ m ≤ n,m odd; (n,m) 6= (3,3);

n −1+ m
2 ,

for 4 ≤ m ≤ n; m and n even; (n,m) 6= (4,4);
max{n −1+ m

2 ,2m −1},
for 4 ≤ m ≤ n,m even and n odd.

(V. Rosta 1973, R.J. Faudree and R.H. Schelp 1974,
Karolyi & Rosta 2001)
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(V. Rosta 1973, R.J. Faudree and R.H. Schelp 1974,
Karolyi & Rosta 2001)
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• R(Cn ,Km) = (n −1)(m −1)+1,

for n ≥ m2 −2 [Bondy, Erdös 1972],

for n > 3 = m [Faudree, Schelp 1974],
for n ≥ 4 = m [Yang, Huang, Zhang 1999],
for n ≥ 5 = m [Bollobás, Jayawardene,

Yang, Huang, Rousseau, Zhang 2000]
for n ≥ 6 = m [Schiermeyer 2003],
for n ≥ m ≥ 7 with n ≥ m(m −2) [Schiermeyer 2003],
for n ≥ 7 = m [Chen, Zhang 2006],
for n ≥ 4m +2 and m ≥ 3 [Nikiforov 2005].

• It was conjectured R(Cn ,Km) = (n −1)(m −1)+1, for all
n ≥ m ≥ 3 except n = m = 3.
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• Chvátal (1977) proved that:

R(Tn ,Km) = (n −1)(m −1)+1.

• Now, if graph Km is replaced by a graph G of diameter 2,
for instance a wheel Wm , then what is R(Tn ,G) ?
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Path-Wheel Ramsey

Let Wn be a wheel of n +1 vertices, namely Wn = K1 +Cn .

Surahmat, etb 2001:
For all n ≥ 3, R(Pn ,W4) = 2n −1 and R(Pn ,W5) = 3n −2.

Proof:
* Suppose F be a (Pn ,W4,2n −1)-good graph.
* Let P be a longest path in F with endpoints p1 and p2.
Obviously, zp1, zp2 ∉ E(F ) for each z ∈V (F )\V (P ).
* Let X =V (F )\V (P ) and Q be a longest path in F [X ].
* Let q1 and q2 be its endpoints. Since |V (F )| = 2n −1 and the
longest path in F is of length ≤ n −1 then there exists a vertex
w ∉V (P )∪V (Q) such that w is independent to all endpoints
p1, p2, q1 and q2.
* Thus, we have W4 with w as a hub and {p1, p2, q1, q2} as
rims, a contradiction. This concludes the proof.
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These Ramsey numbers remain the same when we replace W4

and W5 by W6 and W7 respectively. Preciously, we have the
following theorem.

etb, 2002:
R(Pn ,W6) = 2n −1 if n ≥ 6 and
R(Pn ,W7) = 3n −2 if n ≥ 7.

By employing a generalised version of the previous method, we
could show that the above assertion is true if n ≥ m

2 (m −2).
Precisely, we have:

etb, Surahmat 2001:
1) If n ≥ m

2 (m −2),m ≥ 4 even then R(Pn ,Wm) = 2n −1.

2) If n ≥ m−1
2 (m −3),m ≥ 5 odd then R(Pn ,Wm) = 3n −2.
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This result has been refined by Yaojun Chen, Yunqing Zhang
and Kemin Zhang (2002) by showing that:

1) R(Pn ,Wm) = 2n −1 for even m and n ≥ m −1 ≥ 3,

2) R(Pn ,Wm) = 3n −2 for odd m and n ≥ m −1 ≥ 2.

However, for n < m the situation is different. Here we present
our knowledge on this.
Salman, Broersma, 2007:
For all m ≥ 6,

R(P4,Wm) =
{

m +2 if m ≡ 0,2 mod 3,
m +3 if m ≡ 1 mod 3.

For all m ≥ 8,

R(P5,Wm) =
{

m +3 ifm ≡ 0,2,3 mod 4,
m +4 ifm ≡ 1 mod 4.
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Surprisingly, for n ≥ 3 the Ramsey numbers
R(Sn ,W5) = R(Pn ,W5), but the R(Sn ,W4) 6= R(Pn ,W4).

Surahmat, etb 2001:
For all n ≥ 3,

R(Sn ,W4) =
{

2n −1 if n is odd,
2n +1 if n is even.

However, ...
Chen, Zhang, Zhang, 2004:
R(Sn ,W6) = 2n +1, for all n ≥ 3.

Let m ≥ 6 be even, n = km/2+2 k ≥ 2. Let G = H ∪Kn−1,
where H = (k +1)Km/2. Obviously, G has order 2n+m/2−3 and
∆(G) = n−2 and hence G 6⊇ Sn . It is not difficult to see G 6⊇Wm .
Thus, R(Sn ,Wm) ≥ 2n +m/2−2 if n = km/2+2, for k ≥ 2.
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Furthermore, Surahmat, etb and Broersma (2002) showed that
the following theorem holds for stars and odd wheels:

Surahmat, etb, Broersma, 2002:
For all n ≥ 2m −4, m ≥ 5 and m odd, R(Sn ,Wm) = 3n −2.

This result was improved by Chen, Zhang, Zhang, European
Journal of Combinatorics 25 (2004) 1067-1075:

Chen, Zhang, Zhang, 2004:
For all n ≥ m −1 ≥ 2 and m odd, R(Sn ,Wm) = 3n −2.

Hasmawati, etb, Assiyatun, JCMCC 55 (2005), 123-128:
improved...

Hasmawati, etb, Assiyatun, 2005:
For all n ≥ (m +1)/2, m odd and m ≥ 5, R(Sn ,Wm) = 3n −2.
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With a star-like tree we mean a subdivided star (which is not a
path), i.e., a tree with exactly one vertex of degree exceeding
two.

We denote by Yn,l1,l2,...,lk the star-like tree consisting of a Pn ,
and k additional mutually disjoint paths Pl1 ,Pl2 , . . . ,Plk all
attached by one edge from one of their end vertices to the same
end vertex of the Pn . Then, we have the following theorem.

Surahmat, etb, Broersma, 2002:

R(Yn,l1,l2,...,lk ,Wm) = 3(n +
k∑

i=1
li )−2 for n ≥ 2m −4,n ≥ li for

each i = 1,2, ...,k, m ≥ 5 odd, and bm
2 c+1 ≤

k∑
i=1

li .
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etb, Surahmat, Nababan, Miller (2002):

• Let n ≥ 4 and assume that we are given a particular tree Tn

of n vertices other than a star. Then, the Ramsey number
R(Tn ,W4) = 2n −1.

• Let n ≥ 3 and assume that we are given a particular tree Tn

of n vertices. Then the Ramsey number R(Tn ,W5) = 3n−2.

These results proved by:
* Consider the largest independent set.
* Lemmas:
For odd n ≥ 3, n = 2t +1, the graph Ht +K1 contains all trees Tn

For even n ≥ 4, n = 2t , the graph Ht contains all trees Tn other
than a star.
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• Let n ≥ 3 and assume that we are given a particular tree Tn

of n vertices. Then the Ramsey number R(Tn ,W5) = 3n−2.

These results proved by:
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* Lemmas:
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Chen, Zhang, Zhang, 2004:
for a tree Tn with ∆(Tn) ≥ n −3, we have:

• R(Sn(1,1),W6) = 2n, for n ≥ 4

• R(Sn(1,2),W6) = 2n, for n ≥ 6 and n ≡ 0 (mod 3).
• R(Sn(3),W6) = R(Sn(2,1),W6) = 2n −1, for n ≥ 6.
• R(Sn(1,2),W6) = 2n −1 for n ≥ 6 and n 6≡ 0 (mod 3).
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In general, by modifying the examples above, we can show for
even m, R(Tn ,Wm) depends on the values of n and m if ∆(Tn)
is large enough. Since R(Pn ,Wm) = 2n −1 for even m and
n ≥ m −1 ≥ 3, we believe R(Tn ,Wm) = 2n −1 for m even and
n ≥ m −1 if ∆(Tn) is small.

Problem 4.1
Characterize all trees Tn with R(Tn ,Wm) = 2n −1 for m even
and n ≥ m −1.
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Cycles behave like paths in their Ramsey numbers with respect
to Wheels.

However, for proving it we have to employ different techniques
and utilize the results in Hamiltonicity.

Large cycles vs. small wheels:
Surahmat, etb, Broersma 2004:
R(Cn ,W4) = 2n −1,n ≥ 5,
R(Cn ,W5) = 3n −2, n ≥ 5.

Surahmat, etb, Tomescu, (2006):
R(Cn ,Wm) = 2n −1, for even m, and n ≥ 5m/2−1.

Surahmat, etb, Tomescu, (2008):
R(Cn ,Wm) = 3n −2, for m ≥ 5 odd, and n > 5m−9

2 .
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Cycles behave like paths in their Ramsey numbers with respect
to Wheels.
However, for proving it we have to employ different techniques
and utilize the results in Hamiltonicity.

Large cycles vs. small wheels:
Surahmat, etb, Broersma 2004:
R(Cn ,W4) = 2n −1,n ≥ 5,
R(Cn ,W5) = 3n −2, n ≥ 5.

Surahmat, etb, Tomescu, (2006):
R(Cn ,Wm) = 2n −1, for even m, and n ≥ 5m/2−1.

Surahmat, etb, Tomescu, (2008):
R(Cn ,Wm) = 3n −2, for m ≥ 5 odd, and n > 5m−9

2 .



Introduction

Classical
Ramsey
Number

Graph
Ramsey
Number

Tree-Wheel
Ramsey

Cycle-Wheel
Ramsey

Ramsey for
Union of
Graphs

Cycle-Wheel Ramsey

Small cycles vs. large wheels:
Surahmat, etb, Nababan 2002:
R(C4,Wm) = 9,10,9 for m = 4,5,6.

Tse 2003:
R(C4,Wm) = 11,12,13,14,16 and 17 for m = 7,8,9,10,11, and 12.

Surahmat, etb, Uttunggadewa, Broersma 2005:
R(C4,Wm) ≤ m +dm

2 e+1, for m ≥ 13.

Dybizbanski and Dzido 2013:
R(C4,Wm) = m +4 for 14 ≤ m ≤ 16.
R(C4,Wq2+1) = q2 +q +1 for a prime power q ≥ 4.
R(C4,Wm) ≤ m +bpm −2c+1, for m ≥ 11.
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R(C4,Wm) relates to Finding the largest C4-free graph whose its
component containing no Wm .

Note that:
For k ≥ 5, a (k, g )-graph of order n provides a lower bound of
R(C4,Wn−k ).

Open Problem: Find the general formula of R(C4,Wm), for a
bigger m.
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Question.
Is there any relation between R(Gi , H j ) with R(∪Gi , H j ),
R(Gi ,∪H j ) or R(∪Gi ,∪H j )?

An upper bound for the Ramsey number R(∪Gi , H) is given by
Hasmawati, etb, Assiyatun, 2008:

For any connected graphs G and H , and k ≥ 1, we have
R(kG , H) ≤ R(G , H)+ (k −1)|V (G)|.
Proof. We prove it by induction on k.

• k = 1 it is trivial. Assume the theorem holds for any r < k.
• Let F be a graph with order R(G , H)+ (k −1)|V (G)|.
Suppose F 6⊇ H . By induction hypothesis, F ⊇ (k −1)G.

• Now, write T = F \(k −1)G. Thus, |V (T )| = R(G , H). Since
T 6⊇ H , then T must contain G. Hence, F ⊇ (k −1)G ∪G.

• Therefore, we have R(kG , H) ≤ R(G , H)+ (k −1)|V (G)|.
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etb, Hasmawati, Assiyatun, 2006:
R(kSn ,Wm) = 3n −2+ (k −1)n, if m is odd, n ≥ m+1

2 ≥ 3.

# The good graph: F1 = Kkn−1 ∪2Kn−1.

For n ≥ 3,

R(kSn ,W4) =
{

(k +1)n if n is even and k ≥ 2,
(k +1)n −1 if n is odd and k ≥ 1.

# The good graph: F1 = (H kn−2
2

+K1)∪H n
2
and;

F2 = Kkn−1 ∪Kn−1 (n odd).
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etb, Hasmawati, Assiyatun, 2006:

Let ni ≥ ni+1, i = 1,2, . . . ,k −1. If ni ≥ (ni −ni+1)(m −1) then
R(

⋃k
i=1 Tni ,Km) = R(Tnk ,Km)+∑k−1

i=1 ni .

# The good graph: F = (m −2)Knk−1 ∪K∑k
i=1 ni−1.

Hasmawati, etb, Assiyatun, 2008:
If n ≥ 5 odd, then
R(kSn ,Wm) = R(Sn ,Wm)+ (k −1)n, for m = 2n −4,2n −6 or

2n −8.

# The good graph: F1 ' Kkn−1 ∪Kn−2,n−2, for m = 2n −4.
# The good graph: F2 ' Kkn−1 ∪ [

( n−3
2

)
K2 +

( n−3
2

)
K2], for

m = 2n −6 or 2n −8.
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Hasmawati, etb, Assiyatun, 2008:
Let H and Gi be connected graphs with |Gi | ≥ |Gi+1|,
i = 1,2, . . . ,k −1. If |Gi | > (|Gi |− |Gi+1|)(χ(H)−1) and
R(Gi , H) = (χ(H)−1)(|Gi |−1)+1, then
R(

⋃k
i=1 Gi , H) = R(Gk , H)+∑k−1

i=1 |Gi |.

Burr 1981:
Let H be a graph with chromatic number h and chromatic
surplus s (namely, the minimum cardinality of a color class
taken over all proper χ(H)-colorings of H), and G a graph with
n vertices and if n ≥ s then: R(G , H) ≥ (h −1)(n −1)+ s.

# Good graph: F = (h −1)Kn−1 ∪Ks−1.

Definition:
Graph G is called to be H-good if R(G , H) = (h −1)(n −1)+ s.
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Let H be a graph with chromatic number h and chromatic
surplus s ≥ 1.
Graph G has all components which are H-good,
c(G): the order of the largest component in G, and
ki (G): the number of components of order i . Then:

Bielak, 2009: (Only for s = 1)

R(G , H) = max
1≤ j≤c(G)

{
( j −1)(h −2)+

c(G)∑
i= j

i ki (G)

}
.

Sudarsana, etb, Assiyatun, Uttunggadewa, 2010:

R(G , H) = max
1≤ j≤c(G)

{
( j −1)(h −2)+

c(G)∑
i= j

i ki (G)

}
+ s −1.
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Ramsey for graphs with chromatic surplus s = 2

Sudarsana, etb, Assiyatun, Uttunggadewa, 2010:
R(Pn ,2K3) = 2n.
R(Sn ,2K3) = 2n.
R(Pn ,2K4) = 3n −1.

Let k ≥ 1 and nk ≥ nk−1 ≥ ... ≥ n1 ≥ 4 be integers.
If G =⋃k

i=1 li Tni for Tni ' Pni or Sni then:

R(G ,2K3) = max
1≤i≤k

{
ni +

k∑
j=i

li n j

}
. (1)

Let k ≥ 1 and nk ≥ nk−1 ≥ ... ≥ n1 ≥ 6 be integers.
1) If G =⋃k

i=1 li Pni then:

R(G ,2K4) = max
1≤i≤k

{
2ni +

k∑
j=i

l j n j

}
−1. (2)

2) If G =⋃k
i=1 li Pni and H = 2K3 ∪2K4 then:

R(G , H) = R(G ,2K4). (3)
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Ramsey for graphs with surplus s > 2

Sudarsana, etb, Assiyatun, Uttunggadewa, 2010:
1) If n ≥ 3 then

R(Wn , tK2) =


n + t , for t ≤ bn
2 c,

2t +dn
2 e, for t > bn

2 c.

# Case 2: Kd n
2 e+K 2t−1 is a (Wn , tK2)-good graph with

2t +dn
2 e−1 vertices.

2) If bn
2 c ≥ t then R(Kt +Cn , tK2) = n +2t −1.
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Ramsey for Union of Graphs with surplus s ≥ 1

Sudarsana, etb, Assiyatun, Uttunggadewa, 2014:

Let H be a graph with chromatic number h ≥ 2 and chromatic
surplus s ≥ 1. Let G '⋃k

i=1 Gi , where Gi is a connected graph of
order ni satisfying R(G1, H) ≥ R(G2, H) ≥ ... ≥ R(Gk , H). Then,

R(G , H) ≤ max
1≤i≤k

{
R(Gi , H)+

i−1∑
j=1

n j

}
. (4)

Furthermore, let the maximum value in the right side of (4) be
achieved for i0. If n1 ≥ n2 ≥ ... ≥ nk ≥ s and Gi0 is H-good then

R(G , H) = max
1≤i≤k

{
R(Gi , H)+

i−1∑
j=1

n j

}
. (5)
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Open Problems

Open Problem 1. Let G '⋃k
i=1 Gi , where Gi is a connected

graph and H be a graph.
1 Find R(G , H) if the component of G with having the

smallest Ramsey number is not H-good.
2 Find R(G , H) if all components of G are not H-good.

Open Problem 2. Let G '⋃k
i=1 Gi , and H '⋃t

i=1 Hi , where Gi

and Hi are connected graphs. Find the Ramsey number
R(G , H).

A nice survey paper:
S.P. Radziszowski, Small Ramsey Numbers, Electronic Journal
of Combinatorics (2014), DS1.14
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