Outline	Constructions for g odd	Constructions for g even and h odd	

On the order of cages with a given girth pair

Camino Balbuena, Julián Salas

IWONT 2014

イロト イヨト イヨト イヨト

Ξ.

▲ロト ▲圖 ト ▲目 ト ▲目 ト ● ○ ○ ○ ○

Outline	Introduction	Constructions for g odd	Constructions for g even and h odd	
	of::::::on			
	emition			
^	(1, -)	a a le namular mramh	with with a and with the	loost

A (k,g)-cage is a k-regular graph with girth g and with the least possible number of vertices n(k,g).

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Erdős, Sachs '63

(k,g)-cages exist for every k and g.

Moore bound

$$n(k,g) \ge n_0(k,g) = \begin{cases} 1+k\sum_{i=0}^{(g-3)/2} (k-1)^i & g \text{ odd} \\ 1+k\sum_{i=0}^{(g-2)/2} (k-1)^i & g \text{ even} \end{cases}$$

・ロト ・ 四ト ・ ヨト ・ ヨト

Ξ.

Camino Balbuena, Julián Salas

Bannai, Ito '73, Damerell'73

- ▶ $g \ge 3$ and k = 2.
- ▶ *g* = 3.

Introduction

- ▶ *g* = 4.
- ▶ g = 5 and k = 3, 7, 57.
- ▶ g = 6, 8, 12 and k 1 a prime power.

・ロト ・聞ト ・ヨト ・ヨト

Ξ.

Specific values

Bannai, Ito '73, Damerell'73

- ▶ $g \ge 3$ and k = 2.
- ▶ g = 3.

Introduction

$$g = 4$$

▶ g = 6, 8, 12 and k - 1 a prime power.

Camino Balbuena, Julián Salas

Girth Pair Cage

Minimal (k; g, h)-graph

▲ロト ▲課 ト ▲語 ト ▲語 ト → 語 → のへ()

Girth Pair Cage

Minimal (k; g, h)-graph

Figure: A (3; 6, 7)-cage on 18 vertices.

Camino Balbuena, Julián Salas

Girth Pair Cage

Minimal (k; g, h)-graph

Figure: A (3; 6, 7)-cage on 18 vertices.

Few exact values known.

Camino Balbuena, Julián Salas

	Introduction	Constructions for g odd	Constructions for g even and n odd	Specific value
Co	njecture W8	2		
All	(k, g)-cages	with girth g even	are bipartite	
		0 0	•	
Th	eorem BI80			
ΔII	$(k \sigma)$ -care	with even girth σ	and such that	
n(1	$(\pi, g) = cugc$	(a) < k 2 are him		
	$(,g) - n_0(k)$	$g \ge \kappa - 2$ are bip	di lile.	

Corollary [BS14]

 $n(k; g, h) \ge n_0(k, g) + k - 1$ for even $g \ge 6$ and h > g odd.

Theorem C97

 $n(3; 6, h) \ge (7h + 1)/3$ for h odd.

Camino Balbuena, Julián Salas

Objective

Conjecture HK83

 $n(k;g,h) \leq n(k,h)$

Objective

Conjecture HK83

 $n(k;g,h) \leq n(k,h)$

Theorem XWW02

n(k; h-1, h) < n(k, h)

Camino Balbuena, Julián Salas

Tools

Theorem Monotonicity ES63

Let $k \ge 2$, $3 \le g_1 < g_2$ be integers. Then $n(k, g_1) < n(k, g_2)$.

Lemma J01

Every edge of a (k,g)-cage lies on at least k-1 cycles of length at most g + 1.

イロト イヨト イヨト イヨト

Ξ.

Constructions for g odd: $k \ge 3$ and $h \ge 6$

- [BJLMM05]: $n(k; g, g+3) > k + k(k-1)^{(g-1)/2}$.
- ▶ BI80: There is no (k, h)-graph with even $h \ge 8$ and excess 2.

Figure: A (3; 5, 8)-graph of 18 vertices.

Camino Balbuena, Julián Salas

Theorem

Let $g \ge 5$ odd, such that $h/2 + 1 \le g < h$. Then

$$n(k;g,h) \leq \begin{cases} n(k,h) - 2 \sum_{i=0}^{(h-g-3)/2} (k-1)^i - (k-1)^{(h-g-1)/2} & h \geq 8; \\ n(k,h) - 1 & h = 6. \end{cases}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > ○ < ○

Camino Balbuena, Julián Salas

Outline	Constructions for g odd	Constructions for g even and h odd	

Theorem

Let $h \ge 6$ even, $k \ge 3$ and g and odd number $g \le h/2 - 1$. Suppose that there is a bipartite (k, h)-cage. Then n(k; g, h) < n(k, h).

Theorem

Let $h \equiv 2 \pmod{4}$ and $k \geq 3$. Suppose that there is a bipartite (k, h)-cage. Then $n(k; h/2, h) \leq n(k, h)$.

イロン イ理と イヨン イヨン

Ξ.

Outline	Constructions for g odd	Constructions for g even and h odd	

Conclusion

If g < h with g odd, then n(k; g, h) < n(k; h) for $g \neq h/2$ and $n(k; h/2, h) \leq n(k, h)$ provided that there is a bipartite (k, h)-cage.

イロト イ理ト イヨト イヨト

E 990

Constructions for g even and h odd

Graph $G^{uv}\Gamma_{st}H$ the insertion of (G, uv) into (H, st)

Let G, H be two vertex-disjoint graphs, $uv \in E(G)$ and $st \in E(H)$.

•
$$V(G^{uv}\Gamma_{st}H) = V(G) \cup V(H)$$

• $E(G^{uv}\Gamma_{st}H) = (E(G) \setminus \{uv\}) \cup (E(H) \setminus \{st\}) \cup \{us, vt\}.$

Observe that if G and H are k-regular and bipartite then $G^{uv}\Gamma_{st}H$ is k-regular and bipartite.

Observe that if G and H are k-regular and bipartite then $G^{uv}\Gamma_{st}H$ is k-regular and bipartite.

Theorem

Let $k \ge 3$ and $g \ge 6$ even. Then $n(k; g, 2g - 1) \le 2n(k; g) < n(k, 2g - 1).$

Camino Balbuena, Julián Salas

Theorem

Let $k \ge 3$ and $g \ge 6$ even. Then $n(k; g, 2g - 1) \le 2n(k; g) < n(k, 2g - 1).$

Camino Balbuena, Julián Salas

Let $k \ge 3$, $g \ge 6$ even, and suppose that there is a bipartite (k, g)-cage. Let r an odd number such that $1 \le r \le g - 3$.

Theorem

$$n(k; g, g + r) \leq 4n(k; g)$$

Lemma

 $n(k; g, mg + r) \le 4n(k; g) + k(m-1)n(k; g)$, for $m \ge 1$.

Outline	Constructions for g odd	Constructions for g even and h odd	

Theorem

n(k; g, h) < n(k, h), for $h \ge 2g - 1$.

corollary

For g = 6, 8, 12 and q a prime power and r odd such that $3 \le r \le g - 1$. n(q + 1; g, g + r) < n(q + 1; g + r).

corollary

For q a prime power, $g = 6, 8, 12, m \ge 2$, and r odd such that $1 \le r \le g - 1$ and h = mg + r, h > g + 1. n(q + 1; g, h) < n(q + 1; h).

イロト イ理ト イヨト イヨトー

э.

Camino Balbuena, Julián Salas

Corollary

Suppose that exists a (k,g)-cage with girth g even, such that $n(k,g) - n_0(k,g) \le k - 2$. Then: (i) n(k+1;g,g+1) < n(k+1;g+1), for all k; (ii) n(k+1;g,g+r) < n(k+1;g+r), for every odd number such that $2 \le r \le g - 1$.

Corollary

Suppose that exists a (k,g)-cage with girth g even, such that $n(k,g) - n_0(k,g) \le k - 2$. Then: n(k+1;g,h) < n(k+1;h).

・ロト ・聞ト ・ヨト ・ヨト

Ξ.

\mathcal{THANKS}