A family of mixed dense graphs of diameter 2

G. Araujo-Pardo¹, C. Balbuena², M. Miller^{3,4}, M. Ždímalová⁵ *

 1 Instituto de Matemáticas, Universidad Nacional Autónoma de México, México D. F., México.

²Departament de Matemàtica Aplicada III, Universitat Politècnica de Catalunya, Campus Nord, Edifici C2, C/ Jordi Girona 1 i 3 E-08034 Barcelona, Spain.

 $^3{\rm School}$ of Mathematical and Physical Sciences, University of Newcastle, Australia.

⁴Department of Mathematics,

University of West Bohemia, Pilsen, Czech Republic.

⁵Department of Mathematics and Descriptive Geometry, Slovak University of Technology in Bratislava, Slovakia.

Abstract

In this paper we give a construction of mixed dense graphs of diameter 2, undirected degree q, directed degree $\frac{q-1}{2}$, and order $2q^2$, when q is an odd prime power. Since the Moore bound for a mixed Moore graph with these parameters is equal to $\frac{9q^2-4q+3}{4}$, the defect is $(\frac{q-2}{2})^2 - \frac{1}{4}$.

In particular for q=5 we construct a mixed graph of order 50, undirected degree 5 and directed degree 2. Since Bosák proved (in 1979) that there does not exist a mixed Moore graph with these values of degree and diameter, and since it is easy to see that a mixed graph of the same parameter values and with one vertex less than the Moore bound also does not exist, it turns out that our graph is the largest possible.

Key words. Mixed Moore graphs, diameter, tournament.

^{*}Email addresses: garaujo@matem.unam.mx (G. Araujo), m.camino.balbuena@upc.edu (C. Balbuena), Mirka.Miller@newcastle.edu.au (M. Miller), zdimalova@math.sk (M. Ždímalová)