Construction of Small Regular Graphs of Girth 7

Marién Abreu

Dipartimento di Matematica, Informatica ed Economia Università degli Studi della Basilicata

> joint work with G. Araujo–Pardo, C. Balbuena, D. Labbate and J. Salas

"IWONT 2014" 30th June – 4th July 2014 – Bratislava – Slovakia

Cages

- A (*k*, *g*)-cage is a *k*-regular graph of girth *g* with minimum number of vertices
- (Sachs; 1963): Existence of (k, g)-graphs for each $k \ge 3$ and $g \ge 5$
- Moore's bound is obtained when counting the minimum number of vertices necessary to construct a (k,g)-graph
- A (*k*, *g*)–graph whose order attains Moore's bound is, by definition, also a Moore graph

Odd

End

Moore Graphs

- The only Moore graphs:
 - Girth 5 and k = 2, 3, 7 and maybe 57
 - Girth 6,8 or 12 and they are incidence graphs of finite projective planes, generalized quadrangles or generalized hexagons, respectively
- ('60−'70) Hoffman, Singleton, Feit, Higman, Damerell, Bannai and Ito ⇒ there are no further Moore graphs
- This means that in most cases the number of vertices in a (*k*, *g*)-cage is strictly greater than Moore's bound
- Many authors are trying to construct cages, or at least smaller (k,g)–graphs than previously known ones.

End

Results [M.A., Araujo, Balbuena, Labbate, Salas - 2014]

Here, we will show how to construct the smallest (q + 1)-regular graphs of girth 7 known so far, where $q \ge 4$ is a prime power.

Theorem 1

Let $q \ge 4$ be an even prime power. Then, there is a (q+1)-regular graph of girth 7 and order $2q^3 + q^2 + 2q$.

Results [M.A., Araujo, Balbuena, Labbate, Salas - 2014]

Here, we will show how to construct the smallest (q + 1)-regular graphs of girth 7 known so far, where $q \ge 4$ is a prime power.

Theorem 1

Let $q \ge 4$ be an even prime power. Then, there is a (q+1)-regular graph of girth 7 and order $2q^3 + q^2 + 2q$.

Theorem 2

Let $q \ge 5$ be an odd prime power. Then, there is a (q+1)-regular graph of girth 7 and order $2q^3 + 2q^2 - q + 1$.

Construction for even prime powers: the graph H

Let Γ_q be a (q + 1, 8)-cage, for an even prime power, $q \ge 4$.

Construction for even prime powers: the graph *H* Let Γ_q be a (q + 1, 8)-cage, for an even prime power, $q \ge 4$. Let *H* be a subgraph of Γ_q consisting of the neighbourhood of a vertex $x \in V(\Gamma_q)$ and the neighbourhods of all but two of its neighbours, i. e.

$$H := N(x) \cup \bigcup_{i=2}^{q} N(x_i)$$
 where $N(x) = x_0, x_1, x_2, \dots, x_q$.

Construction for even prime powers: the graph H

Let Γ_q be a (q + 1, 8)-cage, for an even prime power, $q \ge 4$. Let *H* be a subgraph of Γ_q consisting of the neighbourhood of a vertex $x \in V(\Gamma_q)$ and the neighbourhods of all but two of its neighbours, i. e.

$$H := N(x) \cup \bigcup_{i=2}^{q} N(x_i)$$
 where $N(x) = x_0, x_1, x_2, \dots, x_q$.

Observe that $|V(\Gamma_q)| = 2(q^3 + q^2 + q + 1)$ and $|H| = 1 + q + 1 + q(q - 1) = q^2 + 2$, since Γ_q has girth 8.

Construction for even prime powers: the graph H

Let Γ_q be a (q + 1, 8)-cage, for an even prime power, $q \ge 4$. Let *H* be a subgraph of Γ_q consisting of the neighbourhood of a vertex $x \in V(\Gamma_q)$ and the neighbourhods of all but two of its neighbours, i. e.

$$H := N(x) \cup \bigcup_{i=2}^{q} N(x_i)$$
 where $N(x) = x_0, x_1, x_2, \dots, x_q$.

Observe that $|V(\Gamma_q)| = 2(q^3 + q^2 + q + 1)$ and $|H| = 1 + q + 1 + q(q - 1) = q^2 + 2$, since Γ_q has girth 8. Hence, $V(\Gamma_q \setminus H) = 2q^3 + q^2 + 2q$, the number of vertices that our final graph will have.

All vertices have degree q + 1 except for the ones in the following sets:

All vertices have degree q + 1 except for the ones in the following sets:

$$\begin{array}{l} X_0 := N(x_0) - x, \\ X_1 := N(x_1) - x, \\ X_{ij} := N(x_{ij}) - x_i, \\ \text{where } x_{ij} \text{ is the } i^{jth} \text{ neighbour of } x_i, \\ \text{for } i = 2, \dots, q \text{ and } j = 1, \dots, q \end{array}$$

All vertices have degree q + 1 except for the ones in the following sets:

All these sets have even cardinality

Even

For each set $Z \in \mathfrak{Z}$, M_Z will denote a perfect matching of Z

Construction for even prime powers: the graph Γ_q^1 Let $\mathcal{Z} = \{X_0, X_1, X_{ij} : i = 2, ..., q, j = 1, ..., q\}.$

For each set $Z \in \mathfrak{Z}$, M_Z will denote a perfect matching of Z

Definition

We define Γ_q^1 to be the graph with: $V(\Gamma_q^1) := V(\Gamma_q - H)$ and $E(\Gamma_q^1) := E(\Gamma_q - H) \cup \bigcup_{Z \in \mathcal{Z}} M_Z.$ Construction for even prime powers: the graph Γ_q^1 Let $\mathcal{Z} = \{X_0, X_1, X_{ij} : i = 2, ..., q, j = 1, ..., q\}.$

For each set $Z \in \mathfrak{Z}$, M_Z will denote a perfect matching of Z

Definition

We define Γ_q^1 to be the graph with: $V(\Gamma_q^1) := V(\Gamma_q - H)$ and $E(\Gamma_q^1) := E(\Gamma_q - H) \cup \bigcup_{Z \in \mathcal{Z}} M_Z$.

Construction for even prime powers: the graph Γ_q^1 Let $\mathcal{Z} = \{X_0, X_1, X_{ij} : i = 2, ..., q, j = 1, ..., q\}.$

For each set $Z \in \mathfrak{Z}$, M_Z will denote a perfect matching of Z

Definition

We define Γ_q^1 to be the graph with: $V(\Gamma_q^1) := V(\Gamma_q - H)$ and $E(\Gamma_q^1) := E(\Gamma_q - H) \cup \bigcup_{Z \in \mathcal{Z}} M_Z$.

The graph Γ_q^1 is (q+1)-regular

Construction for even prime powers: Condition on Matchings

Lemma

 Γ_q^1 has girth 7 if the following condition holds:

For each $uv \in M_{X_{ij}}$ and X_{kl} , where $i, k \in \{0, ..., q-2\}, j, l \in \{1, ..., q\}$

 $E(\Gamma_q^1[N_2(uv) \cap X_{kl}]) \cap M_{X_{kl}} = \emptyset.$

Construction for even prime powers: Condition on Matchings

Lemma

 Γ_a^1 has girth 7 if the following condition holds:

For each $uv \in M_{X_{ij}}$ and X_{kl} , where $i, k \in \{0, ..., q-2\}, j, l \in \{1, ..., q\}$

 $E(\Gamma_q^1[N_2(uv) \cap X_{kl}]) \cap M_{X_{kl}} = \emptyset.$

Construction for even prime powers: Matchings satisfying the Condition

Lemma

There exist $q^2 - q$ matchings $M_{X_{ii}}$ satisfying the previous condition.

Idea of the proof: Let F_1, \ldots, F_{q-1} be a 1-factorization of K_q with vertices $h \in \{1, \ldots, q\}$

Construction for even prime powers: Matchings satisfying the Condition

Lemma

There exist $q^2 - q$ matchings $M_{X_{ii}}$ satisfying the previous condition.

Idea of the proof: Let F_1, \ldots, F_{q-1} be a 1-factorization of K_q with vertices $h \in \{1, \ldots, q\}$ For each $i = 2, \ldots, q$, let $x_{ijh}x_{ijh'} \in M_{X_{ij}}$ if and only if $hh' \in F_{i-1}$.

(5,7)–graph obtained from the construction for even prime powers, q = 4

Construction for odd prime powers: the graph *H* Definition

Let $x, y \in V(\Gamma_q)$ be vertices at distance four in Γ_q , and let $xx_is_iy_iy$ be the edge disjoint *xy*-paths for i = 0, ..., q. We define the following sets:

$$\begin{array}{lll} H &=& \{x, y, s_3, s_4, \dots, s_q\} \cup N(x) \cup N(y) \subset V(\Gamma_q); \\ X_i &=& N(x_i) \cap V(\Gamma_q - H), \quad i = 0, \dots, q; \\ Y_i &=& N(y_i) \cap V(\Gamma_q - H), \quad i = 0, \dots, q; \\ S_i &=& N(s_i) \cap V(\Gamma_q - H), \quad i = 3, \dots, q. \end{array}$$

Construction for odd prime powers: the graph $\Gamma_q - H$

The graph $\Gamma_q - H$ has order $2q^3 + 2q^2 - q + 1$ but it is not regular. Its degrees are q - 1, q and q + 1.

Construction for odd prime powers: the graph $\Gamma_q - H$

The graph $\Gamma_q - H$ has order $2q^3 + 2q^2 - q + 1$ but it is not regular. Its degrees are q - 1, q and q + 1.

Indeed, the vertices s_0, s_1, s_2 have degree q - 1, those in $X_i \cup Y_i \cup S_i$ have degree q and all the remaining vertices of $\Gamma_q - H$ have degree q + 1.

Construction for odd prime powers: the graph $\Gamma_q - H$

The graph $\Gamma_q - H$ has order $2q^3 + 2q^2 - q + 1$ but it is not regular. Its degrees are q - 1, q and q + 1.

Indeed, the vertices s_0, s_1, s_2 have degree q - 1, those in $X_i \cup Y_i \cup S_i$ have degree q and all the remaining vertices of $\Gamma_q - H$ have degree q + 1.

Therefore, in order to complete the degrees of such vertices it is necessary to add edges to $\Gamma_q - H$ being careful to avoid cycles of length smaller than seven.

For each $Z \in \mathcal{Z}$, M_Z will denote a perfect matching of V(Z).

For each $Z \in \mathcal{Z}$, M_Z will denote a perfect matching of V(Z).

For each $Z \in \mathcal{Z}$, M_Z will denote a perfect matching of V(Z).

Definition

Let Γ_q be a (q + 1, 8)-cage for odd prime power $q \ge 5$.

• Let Γ_q^1 be the graph with: $V(\Gamma_q^1) := V(\Gamma_q - H)$ and $E(\Gamma_q^1) := E(\Gamma_q - H) \cup \bigcup_{Z \in \mathcal{Z}} M_Z.$

• Define Γ_q^2 as $V(\Gamma_q^2) := V(\Gamma_q^1)$ and $E(\Gamma_q^2) := (E(\Gamma_q^1) \setminus \{u_0v_0, u_1v_1, u_2v_2\}) \cup \{s_0u_0, s_0v_0, s_1u_1, s_1v_1, s_2u_2, s_2v_2\},$ the deleted edges u_iv_i belong to M_{X_i} in Γ_q^1 and they are replaced by the paths of length two $u_is_iv_i$, $i \in \{0, 1, 2\}.$

For each $Z \in \mathcal{Z}$, M_Z will denote a perfect matching of V(Z).

Definition

Let Γ_q be a (q + 1, 8)-cage for odd prime power $q \ge 5$.

• Let
$$\Gamma_q^1$$
 be the graph with:
 $V(\Gamma_q^1) := V(\Gamma_q - H)$ and $E(\Gamma_q^1) := E(\Gamma_q - H) \cup \bigcup_{Z \in \mathcal{Z}} M_Z.$

• Define Γ_q^2 as $V(\Gamma_q^2) := V(\Gamma_q^1)$ and $E(\Gamma_q^2) := (E(\Gamma_q^1) \setminus \{u_0v_0, u_1v_1, u_2v_2\}) \cup \{s_0u_0, s_0v_0, s_1u_1, s_1v_1, s_2u_2, s_2v_2\},$ the deleted edges u_iv_i belong to M_{X_i} in Γ_q^1 and they are replaced by the paths of length two $u_is_iv_i$, $i \in \{0, 1, 2\}.$

$$\Gamma_q^2$$
 is $(q+1)$ -regular.

Construction for odd prime powers: Conditions on the Matchings

Lemma

 Γ_q^1 and Γ_q^2 both have girth 7 if the matchings M_{S_i} , M_{X_i} and M_{Y_i} have the following properties:

- (a1) For all $uv \in M_{S_i}$, $E(\Gamma_q^1[N_2(uv) \cap S_j]) \cap M_{s_i} = \emptyset$.
- (a2) For all $uv \in M_{X_i}$, $E(\Gamma^1_q[N_2(uv) \cap Y_j]) \cap M_{Y_i} = \emptyset$.

Construction for odd prime powers: Conditions on the Matchings

Lemma

 Γ_q^1 and Γ_q^2 both have girth 7 if the matchings M_{S_i} , M_{X_i} and M_{Y_i} have the following properties:

(a1) For all $uv \in M_{S_i}$, $E(\Gamma^1_q[N_2(uv) \cap S_j]) \cap M_{s_i} = \emptyset$.

(a2) For all $uv \in M_{X_i}$, $E(\Gamma^1_q[N_2(uv) \cap Y_j]) \cap M_{Y_i} = \emptyset$.

Construction for odd prime powers: Conditions on the Matchings

Lemma

 Γ_q^1 and Γ_q^2 both have girth 7 if the matchings M_{S_i} , M_{X_i} and M_{Y_i} have the following properties:

(a1) For all $uv \in M_{S_i}$, $E(\Gamma_q^1[N_2(uv) \cap S_j]) \cap M_{s_j} = \emptyset$.

(a2) For all $uv \in M_{X_i}$, $E(\Gamma_q^1[N_2(uv) \cap Y_j]) \cap M_{Y_i} = \emptyset$.

The choice of the matchings M_{S_i}

Lemma

There exist matchings M_{S_i} , for i = 3, ..., q, such that condition (*a*1) holds.

The proof follows from the regularity of W(q) which implies that $\{x, y\}^{\perp \perp} = \bigcap_{s \in N_2(x) \cap N_2(y)} N_2(s)$, and hence $|\bigcap_{i=0}^{q} N(S_i)| = q - 1$.

The choice of the matchings M_{S_i}

Lemma

There exist matchings M_{S_i} , for i = 3, ..., q, such that condition (*a*1) holds.

The proof follows from the regularity of W(q) which implies that $\{x, y\}^{\perp \perp} = \bigcap_{s \in N_2(x) \cap N_2(y)} N_2(s)$, and hence $|\bigcap_{i=0}^{q} N(S_i)| = q - 1$.

Let F_1, \ldots, F_{q-2} be a 1-factorization of K_{q-1} with vertices $h \in \{1, \ldots, q-1\}$

The choice of the matchings M_{S_i}

Lemma

There exist matchings M_{S_i} , for i = 3, ..., q, such that condition (*a*1) holds.

The proof follows from the regularity of W(q) which implies that $\{x, y\}^{\perp \perp} = \bigcap_{s \in N_2(x) \cap N_2(y)} N_2(s)$, and hence $|\bigcap_{i=0}^{q} N(S_i)| = q - 1$.

Let F_1, \ldots, F_{q-2} be a 1-factorization of K_{q-1} with vertices $h \in \{1, \ldots, q-1\}$

For each i = 3, ..., q, let $x_{ijh}x_{ijh'} \in M_{S_i}$ if and only if $hh' \in F_{i-2}$.

The choice of the matchings M_{X_i} and M_{Y_i}

In order to find the remaining matchings it was necessary to use a labeling of the vertices of Γ_q according to a coordinatization, using finite fields, of the corresponding W(q).

Lemma

There exist matchings M_{X_i} and M_{Y_i} , for i = 0, ..., q, such that condition (*a*2) holds.

We distinguished two cases:

The choice of the matchings M_{X_i} and M_{Y_i}

Odd

In order to find the remaining matchings it was necessary to use a labeling of the vertices of Γ_q according to a coordinatization, using finite fields, of the corresponding W(q).

Lemma

There exist matchings M_{X_i} and M_{Y_i} , for i = 0, ..., q, such that condition (*a*2) holds.

We distinguished two cases:

The choice of the matchings M_{X_i} and M_{Y_i}

In order to find the remaining matchings it was necessary to use a labeling of the vertices of Γ_q according to a coordinatization, using finite fields, of the corresponding W(q).

Lemma

There exist matchings M_{X_i} and M_{Y_i} , for i = 0, ..., q, such that condition (*a*2) holds.

We distinguished two cases:

Thank You