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Cages

A (k, g)–cage is a k–regular graph of girth g with minimum
number of vertices
(Sachs; 1963): Existence of (k, g)–graphs

for each k > 3 and g > 5
Moore’s bound is obtained when counting the minimum
number of vertices necessary to construct a (k, g)–graph
A (k, g)–graph whose order attains Moore’s bound is, by
definition, also a Moore graph
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Moore Graphs

The only Moore graphs:

Girth 5 and k = 2, 3, 7 and maybe 57
Girth 6, 8 or 12 and they are incidence graphs of finite
projective planes, generalized quadrangles or generalized
hexagons, respectively

( ′60– ′70) Hoffman, Singleton, Feit, Higman, Damerell,
Bannai and Ito =⇒ there are no further Moore graphs
This means that in most cases the number of vertices in a
(k, g)–cage is strictly greater than Moore’s bound
Many authors are trying to construct cages, or at least
smaller (k, g)–graphs than previously known ones.
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Results [M.A., Araujo, Balbuena, Labbate, Salas - 2014]

Here, we will show how to construct the smallest (q+ 1)–regular
graphs of girth 7 known so far, where q > 4 is a prime power.

Theorem 1
Let q > 4 be an even prime power. Then, there is a
(q + 1)–regular graph of girth 7 and order 2q3 + q2 + 2q.

Theorem 2
Let q > 5 be an odd prime power. Then, there is a
(q + 1)–regular graph of girth 7 and order 2q3 + 2q2 − q + 1.
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Construction for even prime powers: the graph H

Let Γq be a (q + 1, 8)–cage, for an even prime power, q > 4.

Let H be a subgraph of Γq consisting of the neighbourhood of a
vertex x ∈ V(Γq) and the neighbourhods of all but two of its
neighbours, i. e.

H := N(x) ∪
q⋃

i=2

N(xi) where N(x) = x0, x1, x2, . . . , xq.

Observe that |V(Γq)| = 2(q3 + q2 + q + 1)
and |H| = 1 + q + 1 + q(q − 1) = q2 + 2, since Γq has girth 8.
Hence, V(Γq \ H) = 2q3 + q2 + 2q, the number of vertices that
our final graph will have.
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Construction for even prime powers: the graph Γq \ H
However, Γq \ H is not regular. It is indeed biregular of degrees
q and q + 1.

All vertices have degree q + 1 except for the ones in the
following sets:

X0 := N(x0) − x,
X1 := N(x1) − x,
Xij := N(xij) − xi,
where xij is the jth neighbour of xi
for i = 2, . . . , q and j = 1, . . . , q

All these sets have even cardinality
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Construction for even prime powers: the graph Γ 1
q

Let Z = {X0, X1, Xij : i = 2, . . . , q, j = 1, . . . , q}.

For each set Z ∈ Z, MZ will denote a perfect matching of Z

Definition
We define Γ 1

q to be the graph with:

V(Γ 1
q ) := V(Γq − H) and E(Γ 1

q ) := E(Γq − H) ∪
⋃

Z∈Z

MZ.

The graph Γ 1
q is (q + 1)-regular
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Construction for even prime powers:
Condition on Matchings

Lemma
Γ 1

q has girth 7 if the following condition holds:

For each uv ∈MXij and Xkl, where i, k ∈ {0, . . . , q − 2}, j, l ∈ {1, . . . , q}

E(Γ 1
q [N2(uv) ∩ Xkl]) ∩MXkl = ∅.
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Construction for even prime powers:
Matchings satisfying the Condition

Lemma
There exist q2 − q matchings MXij satisfying the previous condition.

Idea of the proof: Let F1, . . . , Fq−1 be a 1–factorization of Kq with vertices
h ∈ {1, . . . , q.}

For each i = 2, . . . , q, let xijhxijh′ ∈MXij if and only if hh ′ ∈ Fi−1.

(5, 7)–graph obtained from the construction for even prime powers, q = 4
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Construction for odd prime powers: the graph H
Definition
Let x, y ∈ V(Γq) be vertices at distance four in Γq, and let xxisiyiy
be the edge disjoint xy-paths for i = 0, . . . , q. We define the
following sets:

H = {x, y, s3, s4, . . . , sq} ∪N(x) ∪N(y) ⊂ V(Γq);
Xi = N(xi) ∩ V(Γq − H), i = 0, . . . , q;
Yi = N(yi) ∩ V(Γq − H), i = 0, . . . , q;
Si = N(si) ∩ V(Γq − H), i = 3, . . . , q.
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Construction for odd prime powers: the graph Γq − H

The graph Γq − H has order 2q3 + 2q2 − q + 1 but it is not regular.
Its degrees are q − 1, q and q + 1.

Indeed, the vertices s0, s1, s2 have degree q − 1,
those in Xi ∪ Yi ∪ Si have degree q and

all the remaining vertices of Γq − H have degree q + 1.
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Construction for odd prime powers: the graph Γq − H

The graph Γq − H has order 2q3 + 2q2 − q + 1 but it is not regular.
Its degrees are q − 1, q and q + 1.

Indeed, the vertices s0, s1, s2 have degree q − 1,
those in Xi ∪ Yi ∪ Si have degree q and

all the remaining vertices of Γq − H have degree q + 1.

Therefore, in order to complete the degrees of such vertices it
is necessary to add edges to Γq − H being careful to avoid
cycles of length smaller than seven.
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Construction for odd prime powers: the graphs Γ 1
q and Γ 2

q

As before, let Z be the family of all the sets Xi, Yi, Si. Note that,
all sets in Z have even cardinality.

For each Z ∈ Z, MZ will denote a perfect matching of V(Z).

Definition
Let Γq be a (q + 1, 8)-cage for odd prime power q > 5.

Let Γ 1
q be the graph with:

V(Γ 1
q ) := V(Γq − H) and E(Γ 1

q ) := E(Γq − H) ∪
⋃

Z∈Z

MZ.

Define Γ 2
q as V(Γ 2

q ) := V(Γ 1
q ) and

E(Γ 2
q ) := (E(Γ 1

q ) \ {u0v0, u1v1, u2v2}) ∪ {s0u0, s0v0, s1u1, s1v1, s2u2, s2v2},
the deleted edges uivi belong to MXi in Γ 1

q and they are replaced by the
paths of length two uisivi, i ∈ {0, 1, 2}.

Γ 2
q is (q + 1)–regular.
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Construction for odd prime powers:
Conditions on the Matchings

Lemma

Γ 1
q and Γ 2

q both have girth 7 if the matchings MSi , MXi and MYi

have the following properties:
(a1) For all uv ∈MSi , E(Γ 1

q [N2(uv) ∩ Sj]) ∩Msj = ∅.
(a2) For all uv ∈MXi , E(Γ 1

q [N2(uv) ∩ Yj]) ∩MYj = ∅.
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The choice of the matchings MSi

Lemma
There exist matchings MSi , for i = 3, . . . , q, such that condition
(a1) holds.

The proof follows from the regularity of W(q) which implies that

{x, y}⊥⊥ =
⋂

s∈N2(x)∩N2(y) N2(s), and hence |

q⋂
i=0

N(Si)| = q − 1.

Let F1, . . . , Fq−2 be a 1–factorization of Kq−1 with vertices
h ∈ {1, . . . , q − 1.}

For each i = 3, . . . , q, let xijhxijh ′ ∈MSi if and only if hh ′ ∈ Fi−2.
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The choice of the matchings MXi and MYi

In order to find the remaining matchings it was necessary to
use a labeling of the vertices of Γq according to a
coordinatization, using finite fields, of the corresponding W(q).

Lemma

There exist matchings MXi and MYi , for i = 0, . . . , q, such that
condition (a2) holds.

We distinguished two cases:

q = p is a prime

q = pa, a > 1 is a prime power
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