A construction of Cayley graphs of diameter two and any degree with order $\frac{d^2}{2}$

Marcel Abas^{*a}

^aInstitute of Applied Informatics, Automation and Mathematics, Faculty of Materials Science and Technology in Trnava, Slovak University of Technology in Bratislava, Trnava, Slovakia

The number of vertices of a graph of diameter two and maximum degree d is at most $d^2 + 1$. This number is the Moore bound for diameter two. The order of largest Cayley graphs of diameter two and degree d is denoted by C(d, 2). The only known construction of Cayley graphs of diameter 2 valid for all degrees dgives $C(d, 2) > \frac{1}{4}d^2 + d$. However, there is a construction yielding Cayley graphs of diameter 2, degree d and order $d^2 - O(d^{\frac{3}{2}})$ for an infinite set of degrees d of a special type [1]. We present a construction giving $C(d, 2) \ge \frac{1}{2}d^2 - k$ for d even and of order $C(d, 2)\frac{1}{2}(d^2 + d) - k$ for d odd, $0 \le k \le 8$. In addition, we show that, in asymptotic sense, the most of record Cayley graphs of diameter two are obtained by our construction.

References

 J. Šiagiová, J. Širáň, Approaching the Moore bound for diameter two by Cayley graphs, Journal of Combinatorial Theory, Series B, 102, No. 2, (2012), 470-473

^{*}e-mail: abas@stuba.sk

Research was supported by the VEGA Research Grant No. 1/0811/14.