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A construction of Cayley graphs of

diameter two and any degree

with order d2

2

Marcel Abas∗a

aInstitute of Applied Informatics, Automation and Mathematics,
Faculty of Materials Science and Technology in Trnava,

Slovak University of Technology in Bratislava,
Trnava, Slovakia

The number of vertices of a graph of diameter two and maximum degree d is
at most d2 +1. This number is the Moore bound for diameter two. The order of
largest Cayley graphs of diameter two and degree d is denoted by C(d, 2). The
only known construction of Cayley graphs of diameter 2 valid for all degrees d
gives C(d, 2) > 1

4d
2+d. However, there is a construction yielding Cayley graphs

of diameter 2, degree d and order d2−O(d
3
2 ) for an infinite set of degrees d of a

special type [1]. We present a construction giving C(d, 2) ≥ 1
2d

2 − k for d even
and of order C(d, 2) 1

2 (d2 + d) − k for d odd, 0 ≤ k ≤ 8. In addition, we show
that, in asymptotic sense, the most of record Cayley graphs of diameter two are
obtained by our construction.
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Small bi-regular graphs of even girth

Gabriela Araujo-Pardo1, Geoffrey Exoo2, Robert Jajcay3 ∗

1Instituto de Matemáticas.

Universidad Nacional Autónoma de México, México D. F., México
2Departament of Mathematics and Computer Science.

Indiana State University, Terre Haute, IN 47809
3Departament of Algebra.

Comenius University, 842 48 Bratislava, Slovakia.

A graph of girth g that contains vertices of degrees r and m is called a bi-regular
graph and denoted by ({r,m}, g)-graph. In analogy with the Cage Problem, we seek the
smallest ({r,m}, g)-graphs for given parameters 2 ≤ r < m, g ≥ 3, called ({r,m}, g)-
cages.

Recently, Jajcay and Exoo, constructed an infinite family of ({r,m}, g)-cages for m
much larger than r and odd girth g whose orders match a well-known lower bound given
by Downs, Gould, Mitchem and Saba in 1981. Also they proved that a generalization
of this result to bi-regular cages of even girth is impossible, because if the girth is even
the bi-regular cages never match this lower bound.

In 2003, Yang and Liang, given a lower bound of the order of ({r,m}, 6)-cages and
they constructed families of graphs that match this lower bound. In 2008, Araujo-
Pardo, Balbuena, Garćıa Vázquez, Marcote and Valenzuela showed lower bounds for
any even girth, and constructed more families of graphs that match the lower bound
for ({r,m}, 6)-cages.

In this work, we summarize and improve some of these lower bounds for the orders of
bi-regular cages of even girth and present a generalization of the odd girth construction
to even girth that provides us with a new general upper bound on the order of graphs
with girths of the form g = 2t, t odd. This construction gives us infinitely many
({r,m}, 6)-cages with sufficiently large m. We also determine a ({3, 4}, 10)-cage of
order 82.

References:

∗Email addresses: garaujo@matem.unam.mx (G. Araujo), ge@cs.indstate.edu (G. Exoo),
robert.jajcay@gmail.com (R. Jajcay))
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On a conjecture on the order of cages with a given girth pair

Camino Balbuena

(joint work with Julián Salas)

Departament de Matemàtica Aplicada III

Universitat Politècnica de Catalunya

Campus Nord, Edifici C2, C/ Jordi Girona 1 i 3

E-08034 Barcelona, Spain

Abstract A (k; g, h)-graph is a k-regular graph of girth pair (g, h) where g is the girth of

the graph, h is the length of a smallest cycle of different parity than g and g < h. A (k; g, h)-

cage is a (k; g, h)-graph with the least possible number of vertices denoted by n(k; g, h). In

this talk we prove that n(k; g, h) ≤ n(k, h) for all (k; g, h)-cages when g is odd, and for for g

even and h sufficiently large provided that a bipartite (k, g)-cage exists. This conjecture was

posed by Harary and Kóvacs in [2]. Also we include some comment about the last obtained

upper bounds on the order of (k; g, h)-cages for g = 6, 8, 12 [1].

Bibliography

[1 ] C. Balbuena, J. Salas: Lower and upper bounds for the order of girth pair cages

from Moore graphs, Discrete Math., 321 (2014), 68–75.
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On graph Ramsey numbers for wheels and union
of graphs

Edy Tri Baskoro

Combinatorial Mathematics Research Group,
Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung,
Jl. Ganesa No 10, Bandung 40132, Indonesia
ebaskoro@math.itb.ac.id

2000 Mathematics Subject Classification. : 05C55, 05D10

Ramsey theory was initially studied in the context of the problem of finding a
regular procedure to determine the consistency of any given logical formula (1928).
This became famous after Paul Erdös and George Szekeres (1935) applied it in
graph theory.

The research on finding the exact value of classical Ramsey numbers R(m,n)
has received a lot of attention. However, the results are still far from satisfactory.
On the other hand, graph Ramsey theory as one of its generalizations has grown
enormously in the last four decades to become presently one of the most active
areas in Ramsey theory.

Let G and H be two graphs. Basically, the Ramsey number R(G,H) is defined
as the smallest integer N such that any 2-colouring (red or blue) on the edges of
KN yields either a red subgraph G or a blue subgraph H. The determination of
Ramsey numbers R(G,H) has been studied for various combinations of graphs G
and H. In this talk, we shall give a survey on the determination of Ramsey numbers
R(G,H) if either G or H is a wheel. We also discuss the Ramsey numbers R(G,H)
if either G or H is a union of graphs.
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Applying Sperner antichain to  

digital fingerprint detection  
Ben-shung Chow 

National Sun Yet-sen University bschow@mail.ee.nsysu.edu.tw 

 

Abstract 

Sperner family, formally an antichain in the inclusion lattice over the power set of a 

universal set X, is also called an independent system. The independence is defined as the 

non-containing-ship between every pair of members. In other words, the dependence is 

defined as the existence of a containing-ship for some pairs. This is a relation between two 

members. In contrast, the dependence in linear algebra is defined by the relation between one 

member and one group (many members). We therefore ask if this relational difference for the 

Sperner family is appropriated. Is this dependence relation defined for the Sperner member 

too strict? 

An independent system (the Sperner family) is interpreted by us to have no redundant 

member in the family. Redundant member is clearly understood by words is a member, who 

does make any difference for the family if he exists or not. By this interpretation, the 

dependence relation is built upon the redundant member with the rest of the family. However, 

we shall prove this relation finally becomes to the personal relation between two. To check if 

there is a difference made by the suspicious redundant member, the originally “static” 

member needs to be regarded as an operator to have the ability to influence. One simple 

arrangement is to interpret the family (union of members) as a Boolean operator composed a 

sum (logic OR) of products (logic AND). For example, the family {[11000], [10100], [01100]} 

is regarded as the operator ab + ac + bc. 

 Under the above operator interpretation (interpretation 2, relative to the interpretation 1 

about redundancy), two proofs are developed for the goal that the interpretation 1 leads to the 

original definition of containing-ship between two members used in the Sperner family. One 

is proved by truth table method. We also visualize this method by designing a full-pattern (the 

all possible inputs in the truth table) image to be processed by the family operator and the 

family minus one operator (ab + ac + bc vs. ab + ac for example) to check the difference. The 

second proof is by transforming the logic operation to propositional calculus.     

     Using this interpretation, the Sperner family can be easily extended to many 

applications for a compact purpose. In order to control the redistribution of content, digital 

fingerprinting is used to trace the consumers who use their content for unintended purposes 

[1-4]. These fingerprints can be embedded in multimedia content through a variety of 

watermarking techniques. Conventional watermarking techniques are concerned with 



Communicability in Cubic Generalized Moore Graphs

Francesc Comellas
Universitat Politècnica de Catalunya, Barcelona

Generalized Moore graphs (GMG) are regular graphs which attain the generalized Moore
bound, a bound related to the Moore bound for the degree-diameter problem. A GMG is a graph
that, for a given order and degree, has minimal average distance. Thus, for a GMG of degree ∆
the number of vertices at each distance 1, 2, 3, . . . from any vertex is ∆,∆(∆− 1),∆(∆− 1)2, . . .
with the last level not necessarily filled up. The girth g and diameter D of a GMG satisfy
g ≥ 2D − 1.

Generalized Moore graphs were introduced by Cerf, Cowan, Mullin and Stanton in a series of
papers published in the 70’s, see for example [1]. Further work, for the ∆ = 3 case, was published
by McKay and Stanton [3]. Surprisingly not much research has been done on this topic since
then and relevant questions, like if there are infinitely many GMG for each degree, are still open.

In my talk I will survey known results for cubic GMG and present work in progress with
respect the communicability [2] (a measure of closed walks starting and ending at a node) and
other related properties for non isomorphic cubic generalized Moore graphs with the same order.

References

[1] V.G. Cerf, D.D. Cowan, R.C. Mullin, R.G. Stanton, A partial census of trivalent generalized Moore networks, Lecture Notes in
Math. 452 (1975) pp. 1–27.
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The degree/diameter problem in maximal planar bipartite

graphs ∗

C. Dalfóa, C. Huemera, J. Salasb

aUniversitat Politècnica de Catalunya, BarcelonaTech

Dept. de Matemàtica Aplicada IV, Barcelona, Catalonia

{cristina.dalfo,clemens.huemer}@upc.edu
bIIIA-CSIC, Bellaterra, Catalonia

julian.salas@iiia.csic.es

Abstract

The (∆, D) (degree/diameter) problem consists of finding the largest possible number of
vertices n among all the graphs with maximum degree ∆ and diameter D. We consider the
(∆, D) problem for maximal planar bipartite graphs, that are simple planar graphs in which
every face is a quadrangle. We obtain that for the (∆, 2) problem, the number of vertices
is n = ∆ + 2; and for the (∆, 3) problem, n = 3∆ − 1 if ∆ is odd and n = 3∆ − 2 if ∆
is even. Then, we study the general case (∆, D) and obtain that an upper bound on n is
approximately 3(2D + 1)(∆− 2)bD/2c, and another one is C(∆− 2)bD/2c if ∆ ≥ D and C is
a sufficiently large constant. Our upper bounds improve for our kind of graphs the one given
by Fellows, Hell and Seyffarth for general planar graphs. We also give a lower bound on n for
maximal planar bipartite graphs, which is approximately (∆− 2)k if D = 2k, and 3(∆− 3)k

if D = 2k + 1, for ∆ and D sufficiently large in both cases.

∗Research of C. Dalfó supported by the Ministerio de Educación y Ciencia and the European Regional De-
velopment Fund under project MTM2011-28800-C02-01, and by the Catalan Research Council under project
2009SGR1387. Research of C. Huemer partially supported by projects MEC MTM2012-30951 and Gen. Cat.
DGR 2009SGR1040 and ESF EUROCORES programme EuroGIGA, CRP ComPoSe: grant EUI-EURC-2011-
4306. Research of J. Salas supported by the Ministry of Education and Science, Spain, and the European Regional
Development Fund (ERDF) under project MTM2011-28800-C02-02.
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Diameter 2 Cayley Graphs of Dihedral Groups

Grahame Erskine
Department of Mathematics and Statistics

The Open University
Milton Keynes, UK

Grahame.Erskine@open.ac.uk

Abstract

For a general graph of diameter 2 and maximum degree d, the
largest possible order is asymptotically d2. For Cayley graphs it is
known that there is a relatively sparse family of groups (affine groups
over finite fields of characteristic 2) for which this asymptotic limit can
be attained. For more elementary families of groups, less is known. For
example, for abelian groups the theoretical maximum asymptotic limit
is d2/2 but no construction is known which achieves this bound.

In this talk we consider the degree-diameter problem for Cayley
graphs of dihedral groups with diameter 2 and degree d. We show a
construction based on Galois fields which has asymptotic limit d2/2,
and a counting argument which shows that this is in fact asymptotically
best possible. Thus we completely determine the asymptotic behaviour
of this class of graphs.
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Computing Cages: A Survey of Computational

Methods for the Cage Problem

Geoffrey Exoo
Indiana State University

July 1, 2014

Abstract

The cage problem has provided a variety of entertaining computa-
tional problems. In this talk we survey the state of the art from the pro-
grammer’s perspective. Some general computer methods for constructing
graphs with specified properties will be outlined. Findings that result
from applying these methods to the cage and degree/diameter problems
will be discussed.

A few new lower bounds for specific instances of the problem will be
given. One of these almost leads to a new cage. In this case, we describe
the missing pieces of an argument that might lead to the determination
of the cage.

Finally, we discuss a problem in which nobody other than the speaker
has ever expressed an interest: what is the maximum girth of a cubic
graph that can be constructed on a computer?



A Spectral Characterization of Strongly

Distance-Regular Graphs with Diameter Four.

M.A. Fiol

bUniversitat Politècnica de Catalunya, BarcelonaTech

Dept. de Matemàtica Aplicada IV, Barcelona, Catalonia

(e-mail: fiol@ma4.upc.edu)

Abstract

A graph G with d + 1 distinct eigenvalues is called strongly distance-regular if G
itself is distance-regular, and its distance-d graph Gd is strongly-regular. In this talk
we discuss the case of diameter d = 4, and present a new spectral characterization
of those distance-regular graphs with such a diameter which are strongly distance-
regular.

Keywords: Distance-regular graph; Strongly distance-regular graph; Spectrum.
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Why chemists care about graph theory 

 

Patrick W Fowler 

The University of Sheffield, Sheffield, S3 7HF, UK 

P.W.Fowler@sheffield.ac.uk 

 

Graph theory has had close links with chemistry for at least a century and a half, from 

the early preoccupation with structural enumeration, through quantum mechanical 

models of electronic structure, to systematic nomenclature, study of the links between 

structure and properties of molecules, and the advent of ‘combinatorial chemistry’. 

This talk starts with a personal perspective on what makes chemistry an ideal field for 

the application of graph theory, and goes on to describe some ideas in the burgeoning 

field of molecular conduction, which give yet another reason for chemists to ‘care 

about graph theory’. 

 

The talk includes work done in collaboration with Martha Borg, Rasthy De Los 

Reyes, Wendy Myrvold, Barry Pickup, Tomaz Pisanski, Irene Sciriha, and Tsanka 

Todorova. 

 

  



Decompositions of complete bipartite graphs into prisms

Dalibor Froncek, University of Minnesota Duluth

A generalized prism, or more specifically an (0, j)-prism of order 2n (where n is even) is a
cubic graph consisting of two cycles u0, u1, . . . , un−1 and v0, v1, . . . , vn−1 joined by two sets
of spokes, namely u1v1, u3v3, . . . , un−1vn−1 and u0vj, u2vj+2, . . . , un−2vj−2.

The question of factorization of complete bipartite graphs into (0, j)-prisms was completely
settled by the author and S. Cichacz. Some partial results on decompositions of complete
bipartite graphs and complete graphs have also been obtained by them and P. Kovar and S.
Dib, respectively. The problem of decomposition of complete graphs into prisms of order 12
and 16 was completely solved by the author with S. Cichacz and M. Meszka and presented
at IWONT 2012.

We will present a complete solution for the decomposition of complete bipartite graphs into
(0, 0)-prisms (that is, the usual prisms).

Keywords: Graph decomposition, cubic graph, generalized prism
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On Graphs with Excess or Defect 2

Frederik Garbe
FU Berlin

June 25, 2014

Abstract

The Moore bound m(d, k) = 1 + d
∑k−1

i=0 (d − 1)i is a lower bound for the number
of vertices of a graph by given girth g = 2k + 1 and minimal degree d. Hoffmann and
Singleton [5], Bannai and Ito [1], Damerell [4] showed that graphs with d > 2 tight to
this bound can only exist for girth 5 and degree 3, 7, 57. The difference to the Moore
bound by given girth is called the excess of a graph. In the case of girth 5 Brown
showed in [3] that there are no graphs with excess 1 and Bannai and Ito showed in
[2] that for g ≥ 7 there are also no graphs with excess 1. We generalize the result of
Kovács [6] that, under special conditions for the degree d, there are no graphs with
excess 2 and girth 5 and prove the new result that an excess-2-graph with odd degree
and girth 9 cannot exist. In this proof we discover a link to certain elliptic curves.
Furthermore we prove the non-existence of graphs with excess 2 for higher girth and
special valencies under certain congruence conditions. The results can be modified to
fit the degree/diameter problem and lead to similar statements for graphs with defect
2.
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Subgraphs of cages
Tamás Héger

MTA–ELTE GAC, Hungary

heger@cs.elte.hu

Infinite families of cages are not known except if the girth is 6, 8 or
12 (aside from the trivial cases). In these cases, (k, g) Moore-graphs exist
whenever k is the successor of a prime power; namely, these are the incidence
graphs of generalized polygons. This fact is often exploited by providing
constructions of small (k, g)-graphs based on these families. In this talk
we will focus mainly on the regular subgraphs of the incidence graphs of
generalized polygons from a finite geometrical viewpoint with an emphasis
on projective planes.

First we investigate induced regular subgraphs of generalized polygons.
In general, a perfect t-fold dominating set (t-PDS) in a graph G is a proper
subset D of the vertices such that all vertices of G not in D have exactly t
neighbors in D. Clearly, if G is k-regular, then the complement of a t-PDS
induces a (k − t)-regular subgraph of G. Thus, to obtain a small (k − t)-
regular subgraph for a fixed t, we should find a large t-PDS. In a generalized
polygon a t-PDS consists of a point set P0 and a line set L0 such that each
line not in L0 is incident with exactly t points of P0, and each point not in
P0 is incident with exactly t lines of L0. Such a pair (P0, L0) is also called a
t-good structure.

In the talk we will describe all t-good structures in (equivalently, all in-
duced (q + 1 − t)-regular subgraphs of the incidence graph of) desarguesian
projective planes, provided that t is small enough compared to the order q of
the plane and the characteristic of the coordinatizing field. We will also con-
sider regular non-induced subgraphs, which are much trickier, and in some
cases yield slightly better results. We will show some new constructions as
well.



On the Wiener index for iterated line graphs of trees

Martin Knor

Slovak University of Technology in Bratislava,
Bratislava, Slovakia

Joint work with Riste Škrekovski, Primož Potočnik and Martin Mačaj

Let G be a graph. The sum of all distances in G is called the Wiener index of
G and it is denoted by W (G). The i-iterated line graph of G, Li(G), is Li(G) =
L(Li−1(G)), where L is the line-graph operator and L0(G) = G. Let T denote a
tree. It is known that W (L(T )) 6= W (T ), while W (L2(T )) = W (T ) has infinitely
many solutions. Dobrynin and Melnikov conjectured that W (Li(T )) = W (T ) has
no solution if i ≥ 3. We disproved this conjecture and we characterized all i’s and
T ’s, i ≥ 3, satisfying W (Li(T )) = W (T ).



Speakers: Krist́ına Kováčiková
kristina.kovacikova@fmph.uniba.sk
Comenius University in Bratislava

Co-author: Martin Mačaj
Title: The numbers of induced subgraphs in strongly regular graphs

Let us fix a graph Γ. By PG we denote the number of occurrences of graph G
as an induced subgraph in Γ. Clearly, the values PK1 , PK2 and PK2

represent the
numbers of vertices, edges and non-edges in Γ, respectively.

A k-regular graph Γ of order n, where the number of common neighbours of
any two vertices in Γ depends only on whether they are adjacent or not, is called
a strongly regular graph (SRG(n, k, λ, µ)). In this case it is known that the value
PG of any graph G on at most three vertices is determined uniquely by parameters
of SRG. Unfortunately, with G spanning more than 3 vertices, this nice property
is no longer satisfied. An example of such behavior are two non-isomorphic SRGs
with parameter set (16, 6, 2, 2) and different values of PK4 .

We study how the values of PG for all the graphs on t vertices interact. For
triangle-free SRG we show that PG is determined by n, k, λ and µ for any G on
at most five vertices. When G is a graph on six vertices, PG depends also on the
value PK3,3 .

For putative Moore graph with parameters (3250, 57, 0, 1), PG is determined
uniquely for any graph G on up to 9 vertices. For all graphs on 10 vertices the
values PG are dependent only on the number of occurrences of Petersen graph in
this SRG.



Techniques for Constructing Small Regular Graphs of
Given Girth and Related Topics

Domenico Labbate

Dipartimento di Matematica, Informatica ed Economia
Università degli Studi della Basilicata – Potenza (Italy)

email: domenico.labbate@unibas.it

The Cage Problem asks for the construction of regular simple graphs with
given degree and girth and minimum order. A (k, g)–graph is a k–regular
graph of girth g. Sachs proved in 1963 that (k, g)–graphs exists for each
k ≥ 3 and g ≥ 5. Moore’s bound is obtained when counting the minimum
number of vertices necessary to construct a (k, g)–graph. A (k, g)–graph
whose order attains Moore’s bound is, by definition, also a Moore graph.
It is well known that the Moore graphs exist for girth 5 and k = 2, 3, 7
and maybe 57 and girth 6, 8 or 12 and they are incidence graphs of finite
projective planes, generalized quadrangles or generalized hexagons, respec-
tively. Moreover Hoffman, Singleton, Feit, Higman, Damerell, Bannai and
Ito proved in the 60–70’s that there are no further Moore graphs.

Thus, it is natural to approach the more general problem of determining
the minimum order of (k, g)–graphs. We denote this minimum value by
n(k, g) and a graph attaining this minimum value is said to be a (k, g)–cage.
Hence, in most cases the number of vertices in a (k, g)–cage is strictly greater
than Moore’s bound. Several authors are trying to construct (k, g)–cages, or
at least smaller (k, g)–graphs than previously known ones.

In this talk, we will describe several techniques (algebraical, geometrical
and purely combinatorial) that we used to construct small regular graphs
of girth 5, 6, 7 and 8 as well as to solve some related problems such as the
existence of symmetric configurations and the search for C4–free graphs of
large size. In particular, we will point out how these techniques are related
and how they are helpful in solving the above mentioned problems. Moreover,
we will present new and recent results obtained for small regular (k, g)–graph
of girth 7 and 8 and for biregular ({r,m}, g)–graphs of girth 5. Finally, we
will present some possible further developments of this topic.



ON WENGER GRAPHS

FELIX LAZEBNIK, Department of Mathematical Sciences University of Delaware,
Newark, DE 19716, USA. (lazebnik@math.udel.edu)

Abstract. Let q be a prime power, and let Fq be the field of q elements. For any
positive integer n, Wenger graph Wn(q) is defined as follows: it is a bipartite graph
with the vertex partitions being two copies of the (n + 1)-dimensional vector space
Fn+1

q , and two vertices (p) = (p1, . . . , pn+1) and [l] = [l1, . . . , ln+1] being adjacent

if pi + li = p1l1
i−1, for i = 2, 3, . . . , n + 1. In this talk we will survey properties of

this interesting family of graphs, present several recent results, and mention some
related open problems.
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The degree-diameter problem for circulant graphs

of degree 8 and 9

R.R. Lewis
Department of Mathematics and Statistics

The Open University
Milton Keynes, UK

robert.lewis@open.ac.uk

June 25, 2014

Abstract

This talk considers the degree-diameter problem for undirected circulant graphs.
The focus is on extremal graphs of given (small) degree and arbitrary diameter. The
published literature only covers graphs of up to degree 7. The approach used to
establish the results for degree 6 and 7 has been extended successfully to degree 8 and
9. Candidate graphs are defined as functions of the diameter for both degree 8 and
degree 9. They have been proven to be extremal for small diameters. They establish
new lower bounds for all greater diameters, and are conjectured to be extremal. Finally
some conjectures are made about solutions and upper bounds for circulant graphs of
higher degree.
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The non existence of a Mixed Moore graph of order 486

Nacho López, Jordi Pujolàs.
Departament de Matemàtica

Universitat de Lleida
Jaume II 69, 25001 Lleida, Spain

{nlopez,jpujolas}@matematica.udl.cat

Abstract

Mixed graphs of order n such that for any pair of vertices there is a unique trail of
length at most k between them are known as mixed Moore graphs. These extremal graphs
may only exist for diameter k = 2 and some (infinitely many) values of n. In this talk
we characterize mixed Moore graphs of directed degree one. In particular, we prove the
non-existence of a mixed Moore graph of order 486 which is equivalent to saying that a
directed strongly regular graph with parameters (486, 22, 1, 0, 21) does not exist.
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What to do with the missing Moore graph?

Martin Mačaj

Comenius University, Bratislava, Slovakia

Abstract

The existence of a regular 57-valent graph with diameter 2 and girth
5 is one of the most famous open problems in graph theory. However, due
to the nature of the problem, the number of published papers devoted to
this problem is extremely small. As a consequence, each person interested
in the problem has to start from the beginning and the space for sharing
ideas is limited. What can we, as a community, do to deal with this
situation?
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The degree of a vertex is the number of its adjacent edges; the diameter of a graph is the 
largest distance between any two vertices. The degree/diameter problem asks, for given 
maximum degree and given diameter, what is the largest number of vertices that a graph can 
have? 

A natural upper bound for the degree/diameter problem is the so-called Moore bound. 

A radial Moore graph is a graph of maximum degree d, radius k and diameter at most k+1, 
while the number of vertices is equal to the Moore bound M(d,k). 
 
It has been an open problem for more than a decade to find if a radial Moore graph exists for 
every value of k. In this talk we will present some new results concerning radial Moore 
graphs for any given radius. The talk will conclude with some further open problems. 
 

 



Exploring connections between chemistry,
computer science, and graph theory
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The goal of this talk is to illustrate interconnections between chemistry
and interesting theoretical and algorithmic questions in graph theory.

We will consider several classes of molecules that can be represented by
planar graphs that have maximum degree three. A fullerene is an all carbon
molecule that corresponds to a 3-regular planar graph with face sizes five
or six. Fusenes are hydrocarbon molecules that correspond to simple planar
2-connected graphs embedded in the plane such that all internal faces are
hexagons, all vertices not on the external face have degree 3 and vertices on
the external face have degree 2 or 3. Benzenoids have similar structure but
can contain holes.

Various graph theory concepts are of chemical relevance. A subset S
of the vertices of a graph forms an independent set if the vertices of S are
pairwise non-adjacent. Independent sets model addition possibilities for reac-
tions with bulky addends. Given a perfect matching of a graph, a benzenoid
hexagon is a hexagon which contains three matching edges. One simple
chemical model for stability of benzenoid molecules uses the Fries number
(the maximum number of benzenoid hexagons over all the perfect matchings
of the molecular graph). Another model uses the Clar number (the maximum
number of independent benzenoid hexagons over all perfect matchings). A
conjugated circuit of a graph G is a cycle C such that G − C has a perfect
matching. Several simplified models for currents are based on enumerating
contributions from conjugated circuits.

This talk will summarize the work we have done so far on independent
sets, the Clar and Fries numbers, and currents in molecules. The work dis-
cussed has been done in collaboration with Patrick Fowler, a chemist from
the University of Sheffield, and several students at the University of Victo-
ria: William H. Bird, Matthew J. Imrie, and Sean Daugherty (currently at
Metron Inc.).



Enumeration Of (3, g) Hamiltonian bipartite graphs upto
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Abstract

We present a range of (3, g) Hamiltonian bipartite graphs for a range for vertices
for even values of girth g satisfying 6 ≤ g ≤ 16 and present a new methodology to
analyze the trivalent cage problem for even girth. Our lists of (3, g) Hamiltonian
bipartite graphs have been found to be significantly more dense than other known
lists of (3, g) graphs, and hence allow confirmation of the (3, g) upper bounds. This
would be even more useful for the Cage Problem if these general computational
approaches could be made to work for higher values of girth.
We pose a problem of enumerating (3, g) Hamiltonian bipartite graphs upto 23g/4

vertices that is motivated by the open problem, ”Finding an infinite family of triva-
lent graphs with large girth g and order 2cg for c < 3/4.”
We also introduce (3, g) sub-problems as follows. We decompose the problem of
finding the smallest (3, g) Hamiltonian bipartite graph to sub-problems of for find-
ing (3, g) Hamiltonian bipartite graph with symmetry factor b having the minimum
number of vertices. Symmetry factor is a parameter that reflects the extent of ro-
tational symmetry.
The enumeration of (3, g) Hamiltonian bipartite graphs with symmetry factor b upto
23g/4 vertices corresponds to the sub-problem for finding (3, g) Hamiltonian bipar-
tite graph with symmetry factor b having the minimum number of vertices.
We consider the enumeration of (3, g) Hamiltonian bipartite graphs upto 23g/4 to be
exhaustive if all even vertices less than or equal to 23g/4 that have a (3, g) Hamilto-
nian bipartite graph are listed, with proof for non-existence for vertices not listed,
and at least one (3, g) Hamiltonian bipartite graph for each of the vertices listed. If
list of vertices for which (3, g) Hamiltonian bipartite graphs upto 23g/4 is not com-
plete, then it is a partial list. We consider two cases of partial enumeration, where
results on existence (3, g) Hamiltonian bipartite graph for some vertices listed in
specified range are inconclusive, but upper bound for (3, g) for even girth g can be
confirmed from the list of (3, g) Hamiltonian bipartite graphs.
We show that (3, 6) Hamiltonian bipartite graphs exist for all even vertices greater
than equal to 14. We confirm that there exists only one Hamiltonian bipartite (3, 6)
cage by enumeration and isomorphism checking for 14 vertices, girth 6 and symme-
try factor 7.
We show that (3, 8) Hamiltonian bipartite graphs exist for all even vertices between
30 and 90, with the exception of 32, for which we show that a (3, 8) Hamiltonian
bipartite graph with 32 vertices does not exist. We resolve sub-problems for (3, 8)
Hamiltonian bipartite graphs and find the minimum number of vertices for (3, 10)
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Mixed Cayley graphs of diameter two of order
asymptotically approaching the Moore bound

Jana Šiagiová
Slovak University of Technology

Radlinského 11, 813 68 Bratislava, Slovakia
E-mail: jana.siagiova@stuba.sk

For a range of parameters ∆ and d we present constructions of mixed
Cayley graphs of ‘undirected’ degree ∆, ‘directed’ degree d and diameter 2
such that the ratio of their order and the quantity (∆+d)2+d+1 (the mixed
Moore bound for diameter 2) tends to 1 as ∆ + d → ∞.
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Smallest Regular Graphs of Given Degree and Diameter
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Abstract

A set of vertices S resolves a graph G if every vertex is uniquely determined by its
vector of distances to the vertices in S. The metric dimension of G is the minimum
cardinality of a resolving set of G.

Recently, Knor [6] gave a sharp lower bound on the number of vertices in a regular
graph of given degree and diameter. Here we study the metric dimensions of graphs
achieving such lower bound.
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Covering constructions in the degree-diameter
and degree-girth problems revisited

Jozef Širáň

Slovak University of Technology, Bratislava, Slovakia

A considerable proportion of the largest currently known graphs of given
degree and diameter, and the smallest known graphs of given degree and
girth, have been or can be obtained as lifts of small base graphs with voltages
in groups with a fairly simple structure. In the talk we will revisit such
constructions and outline open problems in this area of research.
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The degree/diameter problem is the problem of finding the largest possi-
ble graph with given diameter d and given maximum degree k. For graphs
with diameter 2 the upper bound (Moore bound) is simplified to k2 + 1. In
1980 Erdös, Fajtlowicz and Hoffman showed that, with the exception of the
cycle of length 4, there does not exist any k-regular graph with diameter
2 and k2 vertices (such graph has order one less than the Moore bound).
Authors reduced this problem to solving the matrix equation

A2 + A− (k − 1)I = J + K,

where A is the adjacency matrix of the graph, I is the identity matrix, J is
the all-ones matrix and K is the matrix of a suitable 1-factor.

Our aim is to solve the generalisation of the previous problem to one in
which we replace Moore graphs with diameter 2 by strongly regular graphs.
That is, we are looking for k-regular graphs on n vertices such that their
adjacency matrix A satisfies the equation

A2 + (c− a)A + (c− k)I = cJ + K.

We derive necessary conditions for parameters (n, k, a, c) analogous to the
integral criterion for strongly regular graphs. In this process the systemic
application of algebraic properties of the third power of adjacency matrix A3

proves to be crucial. Finally we find the complete (infinite) list of param-
eters satisfying these necessary conditions. Existence of graphs with these
parameters remains an open problem.



On graphs of large size without small cycles and commutative diagrams and

their applications
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We define a cycle indicator of a vertex of a simple graph as a minimal cycle through the vertex. A cycle
indicator of a graph is a maximum of cycle indicator of their vertices. The maximal size of the graph with a given
cycle indicator is evaluated. This bound turns out to be sharp in difference with the Even Circuit Theorem by
P. Erdős and its corollary for graphs of given girth. The sharpness is proven explicitly by a construction of the
family of small world graphs with increasing cycle indicator, such that their magnitude is on a new bound.

Let us refer to a directed graph Γ as balanced directed graph if it is a graph without multiple arrows such that
numbers of inputs and outputs are the same for every vertex.

The class of a balanced directed graphs is an extension of the class of simple graphs for which the concept of
a girth can be naturally defined. We evaluate precisely the maximal size of balanced directed graph on v vertices
of girth > d.

Concepts of a family of small world graphs and a family of graphs of large girth can be generalized on a class
of balanced directed graphs.

We prove, that for each pair (K,S), where K is commutative ring and S be its multiplicatively closed subset
without zero, there exists an infinite directed regular balanced graph ΓS(K) without commutative diagrams.

We will use well defined functor (K,S) → ΓS(K) for the construction of families of graphs of large girth,
graphs with large cycle indicator, small world graphs for which ΓS(K) will appear as well defined projective limit.

The brief survey of applications of ΓS(K) to Information Security will be given.
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Abstract

In this paper we give a construction of mixed dense graphs of diameter 2, undirected

degree q, directed degree q−1
2 , and order 2q2, when q is an odd prime power. Since the

Moore bound for a mixed Moore graph with these parameters is equal to 9q2−4q+3
4 , the

defect is ( q−2
2 )2 − 1

4 .

In particular for q = 5 we construct a mixed graph of order 50, undirected degree 5

and directed degree 2. Since Bosák proved (in 1979) that there does not exist a mixed

Moore graph with these values of degree and diameter, and since it is easy to see that

a mixed graph of the same parameter values and with one vertex less than the Moore

bound also does not exist, it turns out that our graph is the largest possible.

Key words. Mixed Moore graphs, diameter, tournament.
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Constructing Cayley graphs for efficient data
transmission
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Abstract

It is well known that Cayley graphs play an important role in the design of
interconnection networks due to many attractive properties they exhibit. In fact, a
number of networks of both theoretical and practical importance are Cayley graphs.
In the past more than two decades researchers proposed many families of Cayley
graphs as models for interconnection networks. I will talk about some efforts in
recent years towards constructing Cayley graphs that are efficient for data trans-
mission measured by transmission time, broadcasting time and/or edge-congestion.
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