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Part 1: Orientable maps
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Definition Symmetries Type of map Permutations L and R

L = (1, 8)(2, 3)(4, 5)(6, 7)(9, 11)(10, 12) Edges

R = (1, 9, 2)(3, 10, 4)(5, 11, 6)(7, 12, 8) Vertices

LR = (1, 7, 5, 3)(2, 10, 8, 9, 6, 12, 4, 11) Faces
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Orientable maps
Definition Symmetries Type of map Permutations L and R

Map M = (D,L,R) has type {ord(LR), ord(R)}.

Map M is orientably-regular if and only if |G | = |D|, where G = ⟨R,L⟩.

E ∈ Sym(D) is an orientation-preserving automorphism of M = (D,L,R) if
and only if RE = ER and LE = EL.

There is an o-p isomorphism between M1 = (D,L1,R1) and M2 = (D,L2,R2)
if and only if there exists E ∈ Sym(D) such that R1E = ER2 and L1E = EL2.

Group Aut+(M) is the centraliser of G in Sym(D).
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Operators on maps Exponents of maps Orientably-regular maps with no exponents

Can we form (possibly) new orientable maps from a given map M = (D,L,R)?

The dual of M is the map D(M) = (D,L,LR).

The e th rotational power of M (where gcd(k, e) = 1) is Me = (D,L,Re).
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L = (1, 13)(2, 4)(3, 6)(5, 11)(7, 12)(8, 9)(10, 14) R = (1, 2, 3, 4, 5)(6, 7, 8)(9, 10, 11)(12, 13, 14)

M2 = (D,L,R2):

R2 = (1, 3, 5, 2, 4)(6, 8, 7)(9, 11, 10)(12, 14, 13)
Underlying graphs of M and M2 are the same.

LR2 = (1, 12, 6, 5, 10, 13, 3, 8, 11, 2)(4)(7, 14, 9)
v − e + f = 4− 7 + 3 = 0 = 2− 2g ⇒ the carrier surface of M2 is torus
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Exponents of orientable maps
Operators on maps Exponents of maps Orientably-regular maps with no exponents

An orietable map M admits an exponent e if there exists an o-p isomorphism
from M to Me .

Must a regular map have exponents?
Is there a regular map with no non trivial exponents? For which type?

Spherical (1/k + 1/m > 1/2):
Every orientably-regular map on the sphere is reflexible. ✗

Toroidal (1/k + 1/m = 1/2):
There are infinitely many orientably-regular maps with no non-trivial exponents
for each toroidal type {3, 6}, {4, 4} and {6, 3}. ✓

Hyperbolic (1/k + 1/m < 1/2):

Bachratá, B ’22

For every hyperbolic pair (k,m) there exists infinitely many orientably-regular
maps of type {m, k} with no non-trivial exponents.
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Part 3: Idea of the proof



Idea of the proof
Base maps Canonical regular covers Example Conclusion

Instead of constructing orientably-regular maps for every hyperbolic type {m, k},
we construct a single orientable map M = (D,L,R) such that:

⋄ M has type {m, k}

⋄ M has at least 7 darts

⋄ ⟨L,R⟩ = Alt(D) or Sym(D)

⋄ M has no non-trivial exponents

Then we take the canonical regular cover M′ = (⟨L,R⟩,L,R) of M.

⋄ M and M′ have the same type

⋄ M′ is always orientably-regular

⋄ if |D| ≥ 7, ⟨L,R⟩ = Alt(D) or Sym(D), and M has no non-trivial
exponents, then M′ has no non-trivial exponenets
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Idea of the proof
Base maps Canonical regular covers Example Conclusion

1

k + 1

k + 2

k + 3

..
.

k

Base map of type {k, k} for k ≥ 10.

L = (1, k + 1)(2, k + 2)(3, k + 3)(k − 6, k − 5)(k − 4, k − 3)(k − 1, k)
R = (1, 2, . . . , k)

LR = (1, k + 1, 2, k + 2, 3, k + 3, 4, 5, . . . , k − 6, k − 4, k − 2, k − 1)

Jones ’14

Let G be a primitive 2-transitive permutation group of degree n that contains a
cycle of length not exceeding n − 3. Then G is isomorphic to the symmetric or
the alternating group of degree n.
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We constructed 7 infinite families for type(s):

⋄ {k, k} for k ≥ 10

⋄ {k + 1, k} and {k, k + 1} for k ≥ 8

⋄ {m, k} and {k,m} for k ≥ 6 and k + 2 ≤ m ≤ 2k − 4

⋄ {m, k} and {k,m} for k ≥ 5 and max(9, 2k − 3) ≤ m ≤ 4k − 11

⋄ {m, k} and {k,m} for k ≥ 5 and m ≥ 3k − 3

⋄ {m, 4} and {4,m} for m ≥ 13

⋄ {3, k} and {k, 3} for k = 13 and k ≥ 15

This leaves 51 hyperbolic pairs, for which we have found suitable permutations
R and L.
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k

k + 1

2k + 1
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2k + r
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k − 1

. .
.

..
.

k + 5

Figure: Base maps of types {m, k} and {k,m} for k ≥ 5 and
max(9, 2k − 3) ≤ m ≤ 4k − 11
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k
k + 1

k − 1
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Figure: Base maps of types {m, 4} and {4,m} for m ≥ 13
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