Orientably-regular maps with no non-trivial exponents

Veronika Bachratá, joint work with Martin Bachratý*

*Slovak University of Technology

Algebraic Graph Theory International Webinar, 7 March 2023

What we want to proof

Theorem 1.1

For every hyperbolic pair (k, m) there exists infinitely many orientably-regular maps of type $\{m, k\}$ with no non-trivial exponents.

What we want to proof

Theorem 1.1

For every hyperbolic pair (k, m) there exists infinitely many orientably-regular maps of type $\{m, k\}$ with no non-trivial exponents.

- ⋄ Orientable maps
- Orientably-regular maps
- \diamond Maps of type $\{m, k\}$
- Exponents of orientable maps
- ♦ How we proof this

Part 1: Orientable maps

Definition Symmetries

Type of map

Permutations ${\cal L}$ and ${\cal R}$

An **orientable map** is a 2-cell embedding of a graph on an orientable surface.

Definition Symmetrie

Type of map

Permutations ${\cal L}$ and ${\cal R}$

An **orientable map** is a 2-cell embedding of a graph on an orientable surface.

Definition Symmetrie

Type of map

Permutations ${\cal L}$ and ${\cal R}$

An **orientable map** is a 2-cell embedding of a graph on an orientable surface.

Symmetries Type of map Permutations \mathcal{L} and \mathcal{R}

An automorphism of a map \mathcal{M} is a bijection that preserves the map structure. Orientation-preserving automorphisms form a group $\operatorname{Aut}^+(\mathcal{M})$.

Hence $|\operatorname{Aut}^+(\mathcal{M})| \leq |\mathcal{D}(\mathcal{M})|$.

If $|\operatorname{Aut}^+(\mathcal{M})| = |\mathcal{D}(\mathcal{M})|$ we say that \mathcal{M} is **orientably-regular**.

Type of map Permutations \mathcal{L} and \mathcal{R}

The **valency** k of \mathcal{M} is the least common multiple of valencies of vertices. The **covalency** m of \mathcal{M} is the least common multiple of valencies of faces. We say that \mathcal{M} has **type** $\{m, k\}$ and corresponds with pair (k, m).

Definition Symmetries

Type of map

Permutations \mathcal{L} and \mathcal{T}

The **valency** k of \mathcal{M} is the least common multiple of valencies of vertices. The **covalency** m of \mathcal{M} is the least common multiple of valencies of faces. We say that \mathcal{M} has **type** $\{m,k\}$ and corresponds with pair (k,m).

Type of map Permutations \mathcal{L} and \mathcal{R}

The **valency** k of \mathcal{M} is the least common multiple of valencies of vertices. The **covalency** m of \mathcal{M} is the least common multiple of valencies of faces. We say that \mathcal{M} has **type** $\{m, k\}$ and corresponds with pair (k, m).

Definition Symmetries Type of map Permutations $\mathcal L$ and $\mathcal R$

$$\mathcal{L} = (1,8)(2,3)(4,5)(6,7)(9,11)(10,12)$$
 EDGES

$$\mathcal{R} \ = \ (1,9,2)(3,10,4)(5,11,6)(7,12,8) \qquad \text{Vertices}$$

$$\mathcal{L} = (1,8)(2,3)(4,5)(6,7)(9,11)(10,12)$$
 Edges $\mathcal{R} = (1,9,2)(3,10,4)(5,11,6)(7,12,8)$ Vertices

Edges

$$\mathcal{L} = (1,8)(2,3)(4,5)(6,7)(9,11)(10,12)$$

$$\mathcal{R} = (1,9,2)(3,10,4)(5,11,6)(7,12,8)$$
 Vertices

$$\mathcal{L} = (1,8)(2,3)(4,5)(6,7)(9,11)(10,12)$$
 Edges $\mathcal{R} = (1,9,2)(3,10,4)(5,11,6)(7,12,8)$ Vertices $\mathcal{L}\mathcal{R} = (1,7,5,3)(2,10,8,9,6,12,4,11)$ Faces

Symmetries Type of map Permutations \mathcal{L} and \mathcal{R}

$$\mathcal{L}=(1,8)(2,3)(4,5)(6,7)(9,11)(10,12)$$
 Edges $\mathcal{R}=(1,9,2)(3,10,4)(5,11,6)(7,12,8)$ Vertices $\mathcal{L}\mathcal{R}=(1,7,5,3)(2,10,8,9,6,12,4,11)$ Faces

Map $\mathcal{M} = (\mathcal{D}, \mathcal{L}, \mathcal{R})$ has type $\{\operatorname{ord}(\mathcal{L}\mathcal{R}), \operatorname{ord}(\mathcal{R})\}$.

Map \mathcal{M} is orientably-regular if and only if $|G| = |\mathcal{D}|$, where $G = \langle \mathcal{R}, \mathcal{L} \rangle$.

 $\mathcal{E} \in \mathrm{Sym}(\mathcal{D})$ is an orientation-preserving automorphism of $\mathcal{M} = (\mathcal{D}, \mathcal{L}, \mathcal{R})$ if and only if $\mathcal{RE} = \mathcal{ER}$ and $\mathcal{LE} = \mathcal{EL}$.

There is an o-p isomorphism between $\mathcal{M}_1 = (\mathcal{D}, \mathcal{L}_1, \mathcal{R}_1)$ and $\mathcal{M}_2 = (\mathcal{D}, \mathcal{L}_2, \mathcal{R}_2)$ if and only if there exists $\mathcal{E} \in \operatorname{Sym}(\mathcal{D})$ such that $\mathcal{R}_1 \mathcal{E} = \mathcal{E} \mathcal{R}_2$ and $\mathcal{L}_1 \mathcal{E} = \mathcal{E} \mathcal{L}_2$.

Group $\operatorname{Aut}^+(\mathcal{M})$ is the centraliser of G in $\operatorname{Sym}(\mathcal{D})$.

Can we form (possibly) new orientable maps from a given map $\mathcal{M} = (\mathcal{D}, \mathcal{L}, \mathcal{R})$?

Can we form (possibly) new orientable maps from a given map $\mathcal{M} = (\mathcal{D}, \mathcal{L}, \mathcal{R})$?

The **dual** of \mathcal{M} is the map $D(\mathcal{M}) = (\mathcal{D}, \mathcal{L}, \mathcal{LR})$.

Can we form (possibly) new orientable maps from a given map $\mathcal{M} = (\mathcal{D}, \mathcal{L}, \mathcal{R})$?

The **dual** of \mathcal{M} is the map $D(\mathcal{M}) = (\mathcal{D}, \mathcal{L}, \mathcal{LR})$.

Can we form (possibly) new orientable maps from a given map $\mathcal{M} = (\mathcal{D}, \mathcal{L}, \mathcal{R})$?

The **dual** of \mathcal{M} is the map $D(\mathcal{M}) = (\mathcal{D}, \mathcal{L}, \mathcal{LR})$.

The *e*th **rotational power** of \mathcal{M} (where gcd(k, e) = 1) is $\mathcal{M}^e = (\mathcal{D}, \mathcal{L}, \mathcal{R}^e)$.

$$\begin{split} \mathcal{L} &= (1,13)(2,4)(3,6)(5,11)(7,12)(8,9)(10,14) \quad \mathcal{R} = (1,2,3,4,5)(6,7,8)(9,10,11)(12,13,14) \\ \mathcal{M}^2 &= (\mathcal{D},\mathcal{L},\mathcal{R}^2) : \end{split}$$

$$\begin{split} \mathcal{L} &= (1,13)(2,4)(3,6)(5,11)(7,12)(8,9)(10,14) \quad \mathcal{R} = (1,2,3,4,5)(6,7,8)(9,10,11)(12,13,14) \\ \mathcal{M}^2 &= (\mathcal{D},\mathcal{L},\mathcal{R}^2): \\ \mathcal{R}^2 &= (1,3,5,2,4)(6,8,7)(9,11,10)(12,14,13) \end{split}$$

Operators on maps Exponents of maps Orientably-regular maps with no exponents

$$\mathcal{L} = (1,13)(2,4)(3,6)(5,11)(7,12)(8,9)(10,14) \quad \mathcal{R} = (1,2,3,4,5)(6,7,8)(9,10,11)(12,13,14)$$

$$\mathcal{M}^2 = (\mathcal{D}, \mathcal{L}, \mathcal{R}^2)$$
:

$$\mathcal{R}^2 = (1, 3, 5, 2, 4)(6, 8, 7)(9, 11, 10)(12, 14, 13)$$

$$\mathcal{LR}^2 = (1, 12, 6, 5, 10, 13, 3, 8, 11, 2)(4)(7, 14, 9)$$

 $v - e + f = 4 - 7 + 3 = 0 = 2 - 2g \implies \text{the carrier surface of } \mathcal{M}^2 \text{ is torus}$

Operators on maps Exponents of maps

$$\mathcal{L} = (1,13)(2,4)(3,6)(5,11)(7,12)(8,9)(10,14) \quad \mathcal{R} = (1,2,3,4,5)(6,7,8)(9,10,11)(12,13,14)$$

$$\mathcal{M}^2 = (\mathcal{D}, \mathcal{L}, \mathcal{R}^2)$$
:

$$\mathcal{R}^2 = (1, 3, 5, 2, 4)(6, 8, 7)(9, 11, 10)(12, 14, 13)$$

$$\mathcal{LR}^2 = (1, 12, 6, 5, 10, 13, 3, 8, 11, 2)(4)(7, 14, 9)$$

 $v - e + f = 4 - 7 + 3 = 0 = 2 - 2g \implies \text{the carrier surface of } \mathcal{M}^2 \text{ is torus}$

Operators on maps Exponents of maps

$$\mathcal{L} = (1,13)(2,4)(3,6)(5,11)(7,12)(8,9)(10,14) \quad \mathcal{R} = (1,2,3,4,5)(6,7,8)(9,10,11)(12,13,14)$$

$$\mathcal{M}^2 = (\mathcal{D}, \mathcal{L}, \mathcal{R}^2)$$
:

$$\mathcal{R}^2 = (1, 3, 5, 2, 4)(6, 8, 7)(9, 11, 10)(12, 14, 13)$$

$$\mathcal{LR}^2 = (1, 12, 6, 5, 10, 13, 3, 8, 11, 2)(4)(7, 14, 9)$$

 $v - e + f = 4 - 7 + 3 = 0 = 2 - 2g \implies \text{the carrier surface of } \mathcal{M}^2 \text{ is torus}$

An orietable map ${\mathcal M}$ admits an exponent e if there exists an o-p isomorphism from \mathcal{M} to \mathcal{M}^e .

An orietable map $\mathcal M$ admits an exponent e if there exists an o-p isomorphism from \mathcal{M} to \mathcal{M}^e .

Must a regular map have exponents?

Operators on maps Exponents of maps Orientably-regular maps with no exponents

An orietable map ${\mathcal M}$ admits an exponent e if there exists an o-p isomorphism from \mathcal{M} to \mathcal{M}^e .

Must a regular map have exponents?

Is there a regular map with no non trivial exponents? For which type?

Operators on maps Exponents of maps Orientably-regular maps with no exponents

An orietable map \mathcal{M} admits an exponent e if there exists an o-p isomorphism from \mathcal{M} to \mathcal{M}^e .

Must a regular map have exponents?

Is there a regular map with no non trivial exponents? For which type?

SPHERICAL (1/k + 1/m > 1/2):

Every orientably-regular map on the sphere is reflexible. X

An orietable map \mathcal{M} admits an exponent e if there exists an o-p isomorphism from M to M^e

Must a regular map have exponents?

Is there a regular map with no non trivial exponents? For which type?

SPHERICAL (1/k + 1/m > 1/2):

Every orientably-regular map on the sphere is reflexible. X

TOROIDAL (1/k + 1/m = 1/2):

There are infinitely many orientably-regular maps with no non-trivial exponents for each toroidal type $\{3,6\}$, $\{4,4\}$ and $\{6,3\}$.

An orietable map \mathcal{M} admits an exponent e if there exists an o-p isomorphism from M to M^e

Must a regular map have exponents?

Is there a regular map with no non trivial exponents? For which type?

SPHERICAL (1/k + 1/m > 1/2):

Every orientably-regular map on the sphere is reflexible. X

TOROIDAL (1/k + 1/m = 1/2):

There are infinitely many orientably-regular maps with no non-trivial exponents for each toroidal type $\{3,6\}$, $\{4,4\}$ and $\{6,3\}$.

HYPERBOLIC (1/k + 1/m < 1/2):

For every hyperbolic pair (k, m) there exists infinitely many orientably-regular maps of type $\{m, k\}$ with no non-trivial exponents.

Instead of constructing orientably-regular maps for every hyperbolic type $\{m, k\}$, we construct a single orientable map $\mathcal{M} = (\mathcal{D}, \mathcal{L}, \mathcal{R})$ such that:

- $\diamond \mathcal{M}$ has type $\{m, k\}$
- $\diamond \mathcal{M}$ has at least 7 darts
- $\diamond \langle \mathcal{L}, \mathcal{R} \rangle = \text{Alt}(\mathcal{D}) \text{ or } \text{Sym}(\mathcal{D})$
- $\diamond \mathcal{M}$ has no non-trivial exponents

Instead of constructing orientably-regular maps for every hyperbolic type $\{m, k\}$, we construct a single orientable map $\mathcal{M} = (\mathcal{D}, \mathcal{L}, \mathcal{R})$ such that:

- $\diamond \mathcal{M}$ has type $\{m, k\}$
- ♦ M has at least 7 darts.
- $\diamond \langle \mathcal{L}, \mathcal{R} \rangle = \text{Alt}(\mathcal{D}) \text{ or } \text{Sym}(\mathcal{D})$
- $\diamond \mathcal{M}$ has no non-trivial exponents

Then we take the **canonical regular cover** $\mathcal{M}' = (\langle \mathcal{L}, \mathcal{R} \rangle, \mathcal{L}, \mathcal{R})$ of \mathcal{M} .

- $\diamond \mathcal{M}$ and \mathcal{M}' have the same type
- $\diamond \mathcal{M}'$ is always orientably-regular
- \diamond if $|\mathcal{D}| \geq 7$, $\langle \mathcal{L}, \mathcal{R} \rangle = \mathrm{Alt}(\mathcal{D})$ or $\mathrm{Sym}(\mathcal{D})$, and \mathcal{M} has no non-trivial exponents, then \mathcal{M}' has no non-trivial exponents

Idea of the proof

Base maps Canonical regular covers

Example

Conclusion

Base map of type $\{k, k\}$ for $k \ge 10$.

$$\mathcal{L} = (1, k+1)(2, k+2)(3, k+3)(k-6, k-5)(k-4, k-3)(k-1, k)$$

$$\mathcal{R} = (1, 2, \dots, k)$$

Base maps Canonical regular covers

Example

Conclusion

Base map of type $\{k, k\}$ for $k \ge 10$.

$$\mathcal{L} = (1, k+1)(2, k+2)(3, k+3)(k-6, k-5)(k-4, k-3)(k-1, k)$$

$$\mathcal{R} = (1, 2, \dots, k)$$

$$\mathcal{LR} = (1, k+1, 2, k+2, 3, k+3, 4, 5, \dots, k-6, k-4, k-2, k-1)$$

Base maps Canonical regular covers

Example

Conclusion

Base map of type $\{k, k\}$ for $k \ge 10$.

$$\mathcal{L} = (1, k+1)(2, k+2)(3, k+3)(k-6, k-5)(k-4, k-3)(k-1, k)$$

$$\mathcal{R} = (1, 2, \dots, k)$$

$$\mathcal{LR} = (1, k+1, 2, k+2, 3, k+3, 4, 5, \dots, k-6, k-4, k-2, k-1)$$

Jones '14

Let G be a primitive 2-transitive permutation group of degree n that contains a cycle of length not exceeding n-3. Then G is isomorphic to the symmetric or the alternating group of degree n.

We constructed 7 infinite families for type(s):

- \diamond {k, k} for k > 10
- $4 \{k+1, k\} \text{ and } \{k, k+1\} \text{ for } k > 8$
- $\{m, k\}$ and $\{k, m\}$ for k > 6 and k + 2 < m < 2k 4
- $\{m, k\}$ and $\{k, m\}$ for k > 5 and $\max(9, 2k 3) < m < 4k 11$
- \Leftrightarrow {m, k} and {k, m} for k > 5 and m > 3k 3
- ϕ {m, 4} and {4, m} for m > 13
- \diamond {3, k} and {k, 3} for k = 13 and k > 15

We constructed 7 infinite families for type(s):

$$\diamond \{k, k\} \text{ for } k \geq 10$$

$$\diamond \ \{k+1,k\} \ \mathsf{and} \ \{k,k+1\} \ \mathsf{for} \ k \geq 8$$

$$\Leftrightarrow \{m,k\} \text{ and } \{k,m\} \text{ for } k \geq 6 \text{ and } k+2 \leq m \leq 2k-4$$

$$\Leftrightarrow \{m,k\}$$
 and $\{k,m\}$ for $k \geq 5$ and $\max(9,2k-3) \leq m \leq 4k-11$

$$\diamond \{m,k\}$$
 and $\{k,m\}$ for $k \geq 5$ and $m \geq 3k-3$

$$\diamond~\{m,4\}$$
 and $\{4,m\}$ for $m\geq 13$

$$\diamond~\{3,k\}$$
 and $\{k,3\}$ for $k=13$ and $k\geq 15$

This leaves 51 hyperbolic pairs, for which we have found suitable permutations \mathcal{R} and \mathcal{L} .

Figure: Base maps of types $\{m,k\}$ and $\{k,m\}$ for $k\geq 5$ and $\max(9,2k-3)\leq m\leq 4k-11$

Figure: Base maps of types $\{\textit{m},\textit{4}\}$ and $\{\textit{4},\textit{m}\}$ for $\textit{m} \geq 13$

Idea of the proof

Base maps Canonical regular covers Example Conclusion

Idea of the proof

