# Orientably-regular maps with no non-trivial exponents 

> Veronika Bachratá, joint work with Martin Bachratý*
*Slovak University of Technology

Algebraic Graph Theory International Webinar, 7 March 2023

## Theorem 1.1

For every hyperbolic pair $(k, m)$ there exists infinitely many orientably-regular maps of type $\{m, k\}$ with no non-trivial exponents.

## Theorem 1.1

For every hyperbolic pair $(k, m)$ there exists infinitely many orientably-regular maps of type $\{m, k\}$ with no non-trivial exponents.
$\diamond$ Orientable maps
$\diamond$ Orientably-regular maps
$\diamond$ Maps of type $\{m, k\}$
$\diamond$ Exponents of orientable maps
$\diamond$ How we proof this

Part 1: Orientable maps

## Orientable maps

Definition


An orientable map is a 2-cell embedding of a graph on an orientable surface.

## Orientable maps



An orientable map is a 2-cell embedding of a graph on an orientable surface.

Orientable maps


An orientable map is a 2-cell embedding of a graph on an orientable surface.

## Orientable maps

## Definition

Symmetries


An automorphism of a map $\mathcal{M}$ is a bijection that preserves the map structure.

## Orientable maps

## Definition

Symmetries


An automorphism of a map $\mathcal{M}$ is a bijection that preserves the map structure.

## Orientable maps

## Definition

Symmetries


An automorphism of a map $\mathcal{M}$ is a bijection that preserves the map structure.

## Orientable maps

## Definition

Symmetries


An automorphism of a map $\mathcal{M}$ is a bijection that preserves the map structure.

## Orientable maps

## Definition

Symmetries


An automorphism of a map $\mathcal{M}$ is a bijection that preserves the map structure.

## Orientable maps



An automorphism of a $\operatorname{map} \mathcal{M}$ is a bijection that preserves the map structure. Orientation-preserving automorphisms form a group $\mathrm{Aut}^{+}(\mathcal{M})$.

## Orientable maps



An automorphism of a $\operatorname{map} \mathcal{M}$ is a bijection that preserves the map structure. Orientation-preserving automorphisms form a group $\mathrm{Aut}^{+}(\mathcal{M})$.

## Orientable maps



An automorphism of a $\operatorname{map} \mathcal{M}$ is a bijection that preserves the map structure. Orientation-preserving automorphisms form a group $\mathrm{Aut}^{+}(\mathcal{M})$.

## Orientable maps



An automorphism of a $\operatorname{map} \mathcal{M}$ is a bijection that preserves the map structure. Orientation-preserving automorphisms form a group $\mathrm{Aut}^{+}(\mathcal{M})$.

## Orientable maps



An automorphism of a $\operatorname{map} \mathcal{M}$ is a bijection that preserves the map structure. Orientation-preserving automorphisms form a group $\mathrm{Aut}^{+}(\mathcal{M})$.

## Orientable maps



An automorphism of a $\operatorname{map} \mathcal{M}$ is a bijection that preserves the map structure. Orientation-preserving automorphisms form a group $\mathrm{Aut}^{+}(\mathcal{M})$.

## Orientable maps



An automorphism of a $\operatorname{map} \mathcal{M}$ is a bijection that preserves the map structure. Orientation-preserving automorphisms form a group $\mathrm{Aut}^{+}(\mathcal{M})$.

Hence $\mid$ Aut $^{+}(\mathcal{M})|\leq|\mathcal{D}(\mathcal{M})|$.
If $\mid$ Aut $^{+}(\mathcal{M})|=|\mathcal{D}(\mathcal{M})|$ we say that $\mathcal{M}$ is orientably-regular.

## Orientable maps

## Definition

Type of map
The valency $k$ of $\mathcal{M}$ is the least common multiple of valencies of vertices. The covalency $m$ of $\mathcal{M}$ is the least common multiple of valencies of faces. We say that $\mathcal{M}$ has type $\{m, k\}$ and corresponds with pair $(k, m)$.

## Orientable maps

The valency $k$ of $\mathcal{M}$ is the least common multiple of valencies of vertices. The covalency $m$ of $\mathcal{M}$ is the least common multiple of valencies of faces. We say that $\mathcal{M}$ has type $\{m, k\}$ and corresponds with pair $(k, m)$.


## Orientable maps

The valency $k$ of $\mathcal{M}$ is the least common multiple of valencies of vertices. The covalency $m$ of $\mathcal{M}$ is the least common multiple of valencies of faces. We say that $\mathcal{M}$ has type $\{m, k\}$ and corresponds with pair $(k, m)$.


## Orientable maps

Permutations $\mathcal{L}$ and $\mathcal{R}$


## Orientable maps

Permutations $\mathcal{L}$ and $\mathcal{R}$


## Orientable maps



$$
\begin{array}{lll}
\mathcal{L} & =(1,8)(2,3)(4,5)(6,7)(9,11)(10,12) & \\
\text { EdGES } \\
\mathcal{R} & =(1,9,2)(3,10,4)(5,11,6)(7,12,8) & \text { Vertices }
\end{array}
$$

## Orientable maps



$$
\begin{array}{lll}
\mathcal{L} & =(1,8)(2,3)(4,5)(6,7)(9,11)(10,12) & \\
\text { EdGES } \\
\mathcal{R} & =(1,9,2)(3,10,4)(5,11,6)(7,12,8) & \text { Vertices }
\end{array}
$$

## Orientable maps

## Definition

Permutations $\mathcal{L}$ and $\mathcal{R}$


$$
\begin{array}{lll}
\mathcal{L} & =(1,8)(2,3)(4,5)(6,7)(9,11)(10,12) & \\
\text { EdGES } \\
\mathcal{R} & =(1,9,2)(3,10,4)(5,11,6)(7,12,8) & \text { Vertices }
\end{array}
$$

## Orientable maps

## Definition

Permutations $\mathcal{L}$ and $\mathcal{R}$


$$
\begin{array}{lll}
\mathcal{L} & =(1,8)(2,3)(4,5)(6,7)(9,11)(10,12) & \\
\text { EdGES } \\
\mathcal{R} & =(1,9,2)(3,10,4)(5,11,6)(7,12,8) & \text { Vertices }
\end{array}
$$

## Orientable maps

## Definition

Permutations $\mathcal{L}$ and $\mathcal{R}$


$$
\begin{array}{lll}
\mathcal{L} & =(1,8)(2,3)(4,5)(6,7)(9,11)(10,12) & \text { Edges } \\
\mathcal{R} & =(1,9,2)(3,10,4)(5,11,6)(7,12,8) & \text { Vertices }
\end{array}
$$

## Orientable maps

## Definition

Permutations $\mathcal{L}$ and $\mathcal{R}$


$$
\begin{array}{lll}
\mathcal{L} & =(1,8)(2,3)(4,5)(6,7)(9,11)(10,12) & \text { EdGES } \\
\mathcal{R} & =(1,9,2)(3,10,4)(5,11,6)(7,12,8) & \text { VERTICES }
\end{array}
$$

## Orientable maps



$$
\begin{array}{lll}
\mathcal{L} & =(1,8)(2,3)(4,5)(6,7)(9,11)(10,12) & \text { Edges } \\
\mathcal{R} & =(1,9,2)(3,10,4)(5,11,6)(7,12,8) & \text { Vertices }
\end{array}
$$

## Orientable maps

## Definition

Permutations $\mathcal{L}$ and $\mathcal{R}$


$$
\begin{array}{lll}
\mathcal{L} & =(1,8)(2,3)(4,5)(6,7)(9,11)(10,12) & \text { EdGES } \\
\mathcal{R} & =(1,9,2)(3,10,4)(5,11,6)(7,12,8) & \text { VERTICES }
\end{array}
$$

## Orientable maps

## Definition

Permutations $\mathcal{L}$ and $\mathcal{R}$


$$
\begin{array}{lll}
\mathcal{L} & =(1,8)(2,3)(4,5)(6,7)(9,11)(10,12) & \\
\text { EdGES } \\
\mathcal{R} & =(1,9,2)(3,10,4)(5,11,6)(7,12,8) & \text { Vertices }
\end{array}
$$

## Orientable maps

## Definition

Permutations $\mathcal{L}$ and $\mathcal{R}$


$$
\begin{array}{lll}
\mathcal{L} & =(1,8)(2,3)(4,5)(6,7)(9,11)(10,12) & \\
\text { EdGES } \\
\mathcal{R} & =(1,9,2)(3,10,4)(5,11,6)(7,12,8) & \text { Vertices }
\end{array}
$$

## Orientable maps



$$
\begin{array}{lll}
\mathcal{L} & =(1,8)(2,3)(4,5)(6,7)(9,11)(10,12) & \text { Edges } \\
\mathcal{R} & =(1,9,2)(3,10,4)(5,11,6)(7,12,8) & \text { Vertices }
\end{array}
$$

## Orientable maps



$$
\begin{array}{lll}
\mathcal{L}=(1,8)(2,3)(4,5)(6,7)(9,11)(10,12) & \text { EdGES } \\
\mathcal{R}=(1,9,2)(3,10,4)(5,11,6)(7,12,8) & \text { VERTICES } \\
\mathcal{L R}=(1,7,5,3)(2,10,8,9,6,12,4,11) & \text { FACES }
\end{array}
$$

## Orientable maps



$$
\begin{array}{lll}
\mathcal{L}=(1,8)(2,3)(4,5)(6,7)(9,11)(10,12) & \text { EdGES } \\
\mathcal{R}=(1,9,2)(3,10,4)(5,11,6)(7,12,8) & \text { VERTICES } \\
\mathcal{L R}=(1,7,5,3)(2,10,8,9,6,12,4,11) & \text { FACES }
\end{array}
$$

## Orientable maps

Map $\mathcal{M}=(\mathcal{D}, \mathcal{L}, \mathcal{R})$ has type $\{\operatorname{ord}(\mathcal{L R}), \operatorname{ord}(\mathcal{R})\}$.

Map $\mathcal{M}$ is orientably-regular if and only if $|G|=|\mathcal{D}|$, where $G=\langle\mathcal{R}, \mathcal{L}\rangle$.
$\mathcal{E} \in \operatorname{Sym}(\mathcal{D})$ is an orientation-preserving automorphism of $\mathcal{M}=(\mathcal{D}, \mathcal{L}, \mathcal{R})$ if and only if $\mathcal{R E}=\mathcal{E} \mathcal{R}$ and $\mathcal{L E}=\mathcal{E} \mathcal{L}$.

There is an o-p isomorphism between $\mathcal{M}_{1}=\left(\mathcal{D}, \mathcal{L}_{1}, \mathcal{R}_{1}\right)$ and $\mathcal{M}_{2}=\left(\mathcal{D}, \mathcal{L}_{2}, \mathcal{R}_{2}\right)$ if and only if there exists $\mathcal{E} \in \operatorname{Sym}(\mathcal{D})$ such that $\mathcal{R}_{1} \mathcal{E}=\mathcal{E} \mathcal{R}_{2}$ and $\mathcal{L}_{1} \mathcal{E}=\mathcal{E} \mathcal{L}_{2}$.

Group $\operatorname{Aut}^{+}(\mathcal{M})$ is the centraliser of $G$ in $\operatorname{Sym}(\mathcal{D})$.

Part 2: Exponents of orientable maps

Exponents of orientable maps Operators on maps Exponents of maps

Can we form (possibly) new orientable maps from a given map $\mathcal{M}=(\mathcal{D}, \mathcal{L}, \mathcal{R})$ ?


Exponents of orientable maps

Can we form (possibly) new orientable maps from a given map $\mathcal{M}=(\mathcal{D}, \mathcal{L}, \mathcal{R})$ ?


The dual of $\mathcal{M}$ is the map $D(\mathcal{M})=(\mathcal{D}, \mathcal{L}, \mathcal{L R})$.

Exponents of orientable maps

Can we form (possibly) new orientable maps from a given map $\mathcal{M}=(\mathcal{D}, \mathcal{L}, \mathcal{R})$ ?


The dual of $\mathcal{M}$ is the map $D(\mathcal{M})=(\mathcal{D}, \mathcal{L}, \mathcal{L R})$.

Exponents of orientable maps

Can we form (possibly) new orientable maps from a given map $\mathcal{M}=(\mathcal{D}, \mathcal{L}, \mathcal{R})$ ?


The dual of $\mathcal{M}$ is the map $D(\mathcal{M})=(\mathcal{D}, \mathcal{L}, \mathcal{L R})$.
The $e$ th rotational power of $\mathcal{M}(w h e r e \operatorname{gcd}(k, e)=1)$ is $\mathcal{M}^{e}=\left(\mathcal{D}, \mathcal{L}, \mathcal{R}^{e}\right)$.

## Exponents of orientable maps



## Exponents of orientable maps

$$
\mathcal{L}=(1,13)(2,4)(3,6)(5,11)(7,12)(8,9)(10,14) \quad \mathcal{R}=(1,2,3,4,5)(6,7,8)(9,10,11)(12,13,14)
$$

$$
\mathcal{M}^{2}=\left(\mathcal{D}, \mathcal{L}, \mathcal{R}^{2}\right)
$$

$$
\mathcal{R}^{2}=(1,3,5,2,4)(6,8,7)(9,11,10)(12,14,13)
$$

Underlying graphs of $\mathcal{M}$ and $\mathcal{M}^{2}$ are the same.

## Exponents of orientable maps



Underlying graphs of $\mathcal{M}$ and $\mathcal{M}^{2}$ are the same.
$\mathcal{L R}^{2}=(1,12,6,5,10,13,3,8,11,2)(4)(7,14,9)$ $v-e+f=4-7+3=0=2-2 g \quad \Rightarrow \quad$ the carrier surface of $\mathcal{M}^{2}$ is torus

## Exponents of orientable maps

## Operators on maps <br> Exponents of maps


$\mathcal{L}=(1,13)(2,4)(3,6)(5,11)(7,12)(8,9)(10,14) \quad \mathcal{R}=(1,2,3,4,5)(6,7,8)(9,10,11)(12,13,14)$

$$
\begin{aligned}
& \mathcal{M}^{2}=\left(\mathcal{D}, \mathcal{L}, \mathcal{R}^{2}\right): \\
& \mathcal{R}^{2}=(1,3,5,2,4)(6,8,7)(9,11,10)(12,14,13)
\end{aligned}
$$

Underlying graphs of $\mathcal{M}$ and $\mathcal{M}^{2}$ are the same.

$$
\mathcal{L R}^{2}=(1,12,6,5,10,13,3,8,11,2)(4)(7,14,9)
$$

$$
v-e+f=4-7+3=0=2-2 g \quad \Rightarrow \quad \text { the carrier surface of } \mathcal{M}^{2} \text { is torus }
$$

## Exponents of orientable maps

## Operators on maps <br> Exponents of maps


$\mathcal{L}=(1,13)(2,4)(3,6)(5,11)(7,12)(8,9)(10,14) \quad \mathcal{R}=(1,2,3,4,5)(6,7,8)(9,10,11)(12,13,14)$

$$
\begin{aligned}
& \mathcal{M}^{2}=\left(\mathcal{D}, \mathcal{L}, \mathcal{R}^{2}\right): \\
& \mathcal{R}^{2}=(1,3,5,2,4)(6,8,7)(9,11,10)(12,14,13)
\end{aligned}
$$

Underlying graphs of $\mathcal{M}$ and $\mathcal{M}^{2}$ are the same.

$$
\mathcal{L R}^{2}=(1,12,6,5,10,13,3,8,11,2)(4)(7,14,9)
$$

$$
v-e+f=4-7+3=0=2-2 g \quad \Rightarrow \quad \text { the carrier surface of } \mathcal{M}^{2} \text { is torus }
$$

Exponents of orientable maps
Orientably-regular maps with no exponents

An orietable map $\mathcal{M}$ admits an exponent $e$ if there exists an o-p isomorphism from $\mathcal{M}$ to $\mathcal{M}^{e}$.

An orietable map $\mathcal{M}$ admits an exponent $e$ if there exists an o-p isomorphism from $\mathcal{M}$ to $\mathcal{M}^{e}$.
Must a regular map have exponents?

An orietable map $\mathcal{M}$ admits an exponent $e$ if there exists an o-p isomorphism from $\mathcal{M}$ to $\mathcal{M}^{e}$.
Must a regular map have exponents?
Is there a regular map with no non trivial exponents? For which type?

An orietable map $\mathcal{M}$ admits an exponent $e$ if there exists an o-p isomorphism from $\mathcal{M}$ to $\mathcal{M}^{e}$.
Must a regular map have exponents?
Is there a regular map with no non trivial exponents? For which type?
Spherical ( $1 / k+1 / m>1 / 2$ ):
Every orientably-regular map on the sphere is reflexible. $X$

An orietable map $\mathcal{M}$ admits an exponent $e$ if there exists an o-p isomorphism from $\mathcal{M}$ to $\mathcal{M}^{e}$.
Must a regular map have exponents?
Is there a regular map with no non trivial exponents? For which type?

Spherical ( $1 / k+1 / m>1 / 2$ ):
Every orientably-regular map on the sphere is reflexible. $X$
Toroidal ( $1 / k+1 / m=1 / 2$ ):
There are infinitely many orientably-regular maps with no non-trivial exponents for each toroidal type $\{3,6\},\{4,4\}$ and $\{6,3\}$.

An orietable map $\mathcal{M}$ admits an exponent $e$ if there exists an o-p isomorphism from $\mathcal{M}$ to $\mathcal{M}^{e}$.
Must a regular map have exponents?
Is there a regular map with no non trivial exponents? For which type?
Spherical ( $1 / k+1 / m>1 / 2$ ):
Every orientably-regular map on the sphere is reflexible. $X$
Toroidal ( $1 / k+1 / m=1 / 2$ ):
There are infinitely many orientably-regular maps with no non-trivial exponents for each toroidal type $\{3,6\},\{4,4\}$ and $\{6,3\}$.

HYPERBOLIC $(1 / k+1 / m<1 / 2)$ :

## Bachratá, B '22

For every hyperbolic pair $(k, m)$ there exists infinitely many orientably-regular maps of type $\{m, k\}$ with no non-trivial exponents.

Part 3: Idea of the proof

## Idea of the proof

Instead of constructing orientably-regular maps for every hyperbolic type $\{m, k\}$, we construct a single orientable $\operatorname{map} \mathcal{M}=(\mathcal{D}, \mathcal{L}, \mathcal{R})$ such that:
$\diamond \mathcal{M}$ has type $\{m, k\}$
$\diamond \mathcal{M}$ has at least 7 darts
$\diamond\langle\mathcal{L}, \mathcal{R}\rangle=\operatorname{Alt}(\mathcal{D})$ or $\operatorname{Sym}(\mathcal{D})$
$\diamond \mathcal{M}$ has no non-trivial exponents

## Idea of the proof

Instead of constructing orientably-regular maps for every hyperbolic type $\{m, k\}$, we construct a single orientable $\operatorname{map} \mathcal{M}=(\mathcal{D}, \mathcal{L}, \mathcal{R})$ such that:
$\diamond \mathcal{M}$ has type $\{m, k\}$
$\diamond \mathcal{M}$ has at least 7 darts
$\diamond\langle\mathcal{L}, \mathcal{R}\rangle=\operatorname{Alt}(\mathcal{D})$ or $\operatorname{Sym}(\mathcal{D})$
$\diamond \mathcal{M}$ has no non-trivial exponents

Then we take the canonical regular cover $\mathcal{M}^{\prime}=(\langle\mathcal{L}, \mathcal{R}\rangle, \mathcal{L}, \mathcal{R})$ of $\mathcal{M}$.
$\diamond \mathcal{M}$ and $\mathcal{M}^{\prime}$ have the same type
$\diamond \mathcal{M}^{\prime}$ is always orientably-regular
$\diamond$ if $|\mathcal{D}| \geq 7,\langle\mathcal{L}, \mathcal{R}\rangle=\operatorname{Alt}(\mathcal{D})$ or $\operatorname{Sym}(\mathcal{D})$, and $\mathcal{M}$ has no non-trivial exponents, then $\mathcal{M}^{\prime}$ has no non-trivial exponenets

## Idea of the proof

Example


Base map of type $\{k, k\}$ for $k \geq 10$.

$$
\begin{aligned}
& \mathcal{L}=(1, k+1)(2, k+2)(3, k+3)(k-6, k-5)(k-4, k-3)(k-1, k) \\
& \mathcal{R}=(1,2, \ldots, k)
\end{aligned}
$$



Base map of type $\{k, k\}$ for $k \geq 10$.

$$
\begin{aligned}
& \mathcal{L}=(1, k+1)(2, k+2)(3, k+3)(k-6, k-5)(k-4, k-3)(k-1, k) \\
& \mathcal{R}=(1,2, \ldots, k) \\
& \mathcal{L} \mathcal{R}=(1, k+1,2, k+2,3, k+3,4,5, \ldots, k-6, k-4, k-2, k-1)
\end{aligned}
$$

Idea of the proof


Base map of type $\{k, k\}$ for $k \geq 10$.

$$
\begin{aligned}
& \mathcal{L}=(1, k+1)(2, k+2)(3, k+3)(k-6, k-5)(k-4, k-3)(k-1, k) \\
& \mathcal{R}=(1,2, \ldots, k) \\
& \mathcal{L R}=(1, k+1,2, k+2,3, k+3,4,5, \ldots, k-6, k-4, k-2, k-1)
\end{aligned}
$$

## Jones '14

Let $G$ be a primitive 2-transitive permutation group of degree $n$ that contains a cycle of length not exceeding $n-3$. Then $G$ is isomorphic to the symmetric or the alternating group of degree $n$.

We constructed 7 infinite families for type(s):
$\diamond\{k, k\}$ for $k \geq 10$
$\diamond\{k+1, k\}$ and $\{k, k+1\}$ for $k \geq 8$
$\diamond\{m, k\}$ and $\{k, m\}$ for $k \geq 6$ and $k+2 \leq m \leq 2 k-4$
$\diamond\{m, k\}$ and $\{k, m\}$ for $k \geq 5$ and $\max (9,2 k-3) \leq m \leq 4 k-11$
$\diamond\{m, k\}$ and $\{k, m\}$ for $k \geq 5$ and $m \geq 3 k-3$
$\diamond\{m, 4\}$ and $\{4, m\}$ for $m \geq 13$
$\diamond\{3, k\}$ and $\{k, 3\}$ for $k=13$ and $k \geq 15$

We constructed 7 infinite families for type(s):
$\diamond\{k, k\}$ for $k \geq 10$
$\diamond\{k+1, k\}$ and $\{k, k+1\}$ for $k \geq 8$
$\diamond\{m, k\}$ and $\{k, m\}$ for $k \geq 6$ and $k+2 \leq m \leq 2 k-4$
$\diamond\{m, k\}$ and $\{k, m\}$ for $k \geq 5$ and $\max (9,2 k-3) \leq m \leq 4 k-11$
$\diamond\{m, k\}$ and $\{k, m\}$ for $k \geq 5$ and $m \geq 3 k-3$
$\diamond\{m, 4\}$ and $\{4, m\}$ for $m \geq 13$
$\diamond\{3, k\}$ and $\{k, 3\}$ for $k=13$ and $k \geq 15$
This leaves 51 hyperbolic pairs, for which we have found suitable permutations $\mathcal{R}$ and $\mathcal{L}$.

## Idea of the proof



Figure: Base maps of types $\{m, k\}$ and $\{k, m\}$ for $k \geq 5$ and $\max (9,2 k-3) \leq m \leq 4 k-11$

## Idea of the proof



Figure: Base maps of types $\{m, 4\}$ and $\{4, m\}$ for $m \geq 13$

Idea of the proof
Base maps Canonical regular covers Example Conclusion

## Idea of the proof

## Base maps

Canonical regular covers
Conclusion


