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Title of talk/story

Back story: writing book on regular maps with Marston, Gareth,
and Jozef.

Primoz: “How is the book coming? Have you decided
on notation?”
This talk is a conversation, I hope. Leave video and microphone on.
Who recognizes first part of title?
Generational story; “The median isn’t the message” - Stephen J.
Gould (1982)
“The medium is the message”-Marshal McLuhan (e.g.chalk talks
versus slides), Could have used that for second part of title.

Second part of title? For younger listeners. Math Education jargon.
Rule of four (for calculus) Everything should be viewed not just
algebraically, but also graphically (geometry), numerically (tables
of values) and verbally.Cognition: geometry means visual
Big ones are algebra and geometry. Extremes: Newton’s Principia
and Lagrange’s Mécanique analytique
Your assignment Google “Median Gould” ,“McLuhan” “Principia
Newton” , “Mecanique anal...” Start now.
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Intuitive map

Dissection of a surface (e.g the 2-sphere) into vertices, edges and
faces. Colloquial use of the word “map” as in a road map
Or just a “drawing by a child” on a surface.
But terminology: why not “points, lines, regions”? I think
influence of convex polyhedra.
And how do you draw a map on the torus? Easy answer: view
torus as rectangle with sides identified.

4-color conjecture for sphere, Heawood conjecture for other
surfaces by genus

Platonic solids, Euler’s Polyhedral Formula. (but note Euler did
not think of graphs here)

(Infinite maps) Tesselations, especially crystallographic: 17
euclidean the Alhambra-Escher hyperbolic Fricke-Klein-Magnus
But how do you turn the crank? For example, put it on a
computer?
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Topological Map: Graph Embedding (cellular)

A map is a “cellular” embedding f : G → S of a graph in a closed
surface (nice, piece-wise linear) such that each component of
S − f (G ) is simply connected (homeomorphic to an open disk).

“Graph” could allow multiple edges or loops (or not).
Can do open surfaces (not compact, no boundary) like the plane
but locally finite graph

This viewpoint important for the Heawood problem where you fix
the graph (G = Kn) and find minimal genus of S .
Kuratowski,
Crunch-time for Notation: Who gets to be called G , Γ? Graphs
or groups?
Primoz
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Rotation systems: combinatorial map (orientable)

Direct all edges in graph and describe face boundaries (oriented by
given orientation of surface) as cycles for forming one permutation,
the “face rotation” for the embedding.

Goes back to Heawod (1890), Heffter (1891).

Primal embedding: give cyclic order (again using given orientation)
of directed edges beginning at each vertex; “vertex rotation” ρ
Edmonds (1960) abstract in AMS Notices. Faces are then traced
out by cycles of ρλ where λ is involution reversing edge directions.
Ringel started using face rotations for embeddings of Kn in the
1950s in his work on the Heawood Conjecture.
Gave them via “current graphs”, which Gross later saw as
branched coverings. So rotations provides a crank to turn but
actual rotation provides by complicated diagrams.
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Flags and flag graphs

Subdivide map by adding a vertex at face center and connect to all
edge midpoints and vertices (barycentric subdivision.

Get “right”
triangles giving a vertex-edge-face incidence called flag (Tutte
1974).
Now view map as obtained by gluing together these flags by
pairings r0 and r2 for “legs” of right triangle and r1 for
hypotenuse.Notation? a, b, c ?

r1 r1r0

r0

r2r2

(a) (b)

v

f

e

1 12 2

3 34 4

Figure: Four flags lying on an edge
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Combinatorialization and Algebraicization

So here is new definition of a map.

Def (combinatorial) A map is a trivalent graph with edges
(perfectly) colored by r0, r1, r2 where r0, r2 cycles all have length 4.
each vertex is a flag. Vertices are r1, r2 cycles, edges are r0, r2
cycles, faces are r1, r2 cycles. Incidence is non-empty intersection
of cycles.
Called the flag graph of the map.

To get the map, just fill in the two-colored cycles by disks (note
they are all simple cycles).
Def(algebraic) A map is a permutation group on 4n symbols
generated by specified fixed-point free involutions r0, r1, r2 such
that (r0r2)2 = 1. Flag graph is Schreier color graph for that
permutation group.
Can view as right action of a group G on the right cosets of a
subgroup H of index 4n.The group together with generators
r0, r1, r2 is the monodromy of the map.
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Symmetry

Warning Do not view r0, r1, r2 as “reflections”, i.e. as symmetries
of the map.

They are pairings indicating gluing instructions.

But suppose you do view them as symmetries of the map? Then
the flag graph is a Cayley graph for a regular map, not a Schreier
graph.Action of the group is on the left (the subgroup H is
normal).

The fork in the road Symmetry (maps) or no symmetry (graph
embeddings)
1. Symmetry: group theory! classification of regular maps by
genus, underlying graph, automorphism group, edge-transitive
maps, Cayley maps (underlying graph is Cayley graph (Dehn
Grüppenbild) under a subgroup of Aut(M)
2. No symmetry: graph minors (Robertson-Seymour), genus of a
graph, polynomials (Bollobas-Riordan)
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Grüppenbild) under a subgroup of Aut(M)
2. No symmetry: graph minors (Robertson-Seymour), genus of a
graph, polynomials (Bollobas-Riordan)



Covering spaces: Going Down
A covering p : X → Y is a surjection that is a local
homeomorphism (takes small open neighborhoods
homeomorphically to small open neighborhoods).

Governed by the
fundamental group π1.
Theorem A covering induces a monomorphism
p∗ : π1(X , x)→ π1(Y , y) and for every subgroup of π(T , y) there
is a covering p : X → Y with p ∗ (π(X , x) that subgroup.
Permutation representation.
Theorem(regular covering) If p ∗ (π(X , x) is normal in π1(X , x),
then the quotient group G acts on X by “deck-transformations”:
homeomorphisms f such that pf = p. Then p−1(x) can be
identified with G and action of deck-transformations is left
multiplication by G .
For surfaces where X is closed, actually want branched coverings
where there is a finite subset B of discrete points such that at each
point of p−1(B) the covering is not locally one-to-one but instead
looks like z → zn in complex plane.
Example Suppose T is a connected graph.Then π(T , y) is free on
β(T ). To get regular covering in group just assign elements of G
to each directed edge (voltage assignment)For other, just assign
permutations.
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Dessins

So a new definition of map.

Def (Topology) An (orientable) hypermap is a branched covering
p : S− > T where T is the sphere and there are three branch
points 0, 1,∞ Let e be an edge between 0 and 1. The underlying
graph for this hypermap is bipartite graph p−1(e). To get a map,
y must have order 2 (and underlying graph smooths over the
valence 2 vertices).

Belyi’s Thm (1979) A non-singualr algebraic curve is definable
over the algebraic numbers if and only branched over sphere with
three banch points.
Groethendieck saw this in terms of the absolute Galois group
acting on maps, calling a map “dessin d’enfant” Please note, not
“dessins d’enfants”.
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Ribbon Graphs

Just thicken the graph into “vertex-disks” attached together by
edge “ribbons”. Throw away the faces.

Used in graph/knot
polynomials (e.g Bollobas-Riordan).
You can then draw the embeddings on a flat piece of paper: just
put down vertices as disks. Then connect with ribbons that pass
over and under each other as if in 3-space. What about faces?
Just trace them out.Also called “fat graphs”. Notation G . (?!)
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Jones-Singerman: Going up to get geometry
Go to universal cover of surface: sphere for χ(S) > 0, euclidean
plane for χ(S) = 0, and hyperbolic plane for χ(S) < 0.

Then just as with Riemann surfaces, let the covering map bring
down the geometry with it. (1978)
Example The flags for a regular map of type (7, 3) lifts to tiling of
hyperbolic plane by (π/7, π/3, π/2) triangles. The automorphisms
of the tiling are generated by reflections r0, r1, r2 in the sides of one
of these triangles satisfying (r1r2)7 = (r2r0)2 = (r1r0)3 = 1 The
resulting group is the triangle group ∆(7, 3, 2).The flag graph lifts
to a Cayley graph for this triangle group and since the plane is
simply connected, there are no other relators (shrink any cycle in
flag graph to a point, pulling over faces (r1r2)7 = 1 and vertices
(r1r0)3 = 1.
The geometry of the universal covering comes down to the surface
as a quotient (orbifold) by a discrete subgroup
Riemann mapping theorem. Thurston geometrization: gives pieces
with 8 possible geometries glued together along torii, or spheres
(Field’s Medal 1982)
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Signature of Riemann surface: Going up and going down

For group of conformal automorphisms of a Riemann surface S
have signature (h, {m1, . . .mk).

with generators ai , bi , cj such that

Π[ai .bi ]Πcj = 1

Going down:just do representation of π1(T − B) using generators
of standard view of surface as 2h- polygon with edges identified
together with isolated k points removed
Going up: fundamental domain for action of discrete group as a
polygon.
Riemann surface signature crowd and map crowd don’t see things
the same way.
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Duality

The choice of generators r0, r1, r2 are as important as the group
itself.

Interchanging r0 and r2 gives the dual map Replacing r0 by
r0r2 gives the Petrie dual. Replace r2 by r0r2 gives Wilson.6 choices
for r0, r2 in klein 4-group and Wilson group action of Σ3 on
r0, r2, r0r2

r1

r1r1

r1

r0

r2

r0

r2

(a) primal (b) Petrie (c) Wilson

1 1

4 3

2

4 3

212

34

Partial duality: express duality as multiplying r0 and r2 by r0r2.For
partial duality on subset A of edges, only multiply by partial
permutation r0r2|A (GT 2021 - turn the crank with Grey code for
polynomials)
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Orientabiity

Map is orientable if and only if the subgroup 〈r0r1, r1r2〉 has index
two (it has index at most two).

Same as flag graph being bipartite.
Thm (canonical double cover: Singerman 1972, Tucker 1982,
folk?) Given a map M in a non-orientable surface, it is
double-covered by a map N in an orientable surface with
Aut+(N) = Aut(M) and Aut(N) = Aut(M)× C2.

Proof 1:For monodromy of M, we have 〈r0r1, r1r2〉 = 〈r0, r1, r2〉 so
let N be map with monodromy (r0, 1), (r1, 1), (r2, 1) (for direct
product with C2). Automorphism group is centralizer.
Proof 2: For covering spaces, let N be covering corresponding to
the orientation-preserving subgroup of πo1 (M, x) and apply
standard lifting properties.Same as applying same as voltage in C2

to all edges of flag graph.
Proof 3:Go to universal covering U where M = U/C for some
subgroup C of universal group. Then go to orientation-preserving
subgroup of C .
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subgroup C of universal group. Then go to orientation-preserving
subgroup of C .



Remarkable coincidences

Tutte (1974),

Jones-Singerman(1978),Vince (1981),Lins (GEMs
1982), Gagliardi et al (Crystallizations 1981), Wilson (maniplex
1978, but published 2010).

Thurston (Princeton Notes “The topology and geometry of
3-manifolds” 1978-81), Marden (“Geometry of f.g Kleinian groups”
1974), Robert Riley ( 1970s - the gleam in Thurston’s eyes)
Also: Marston(1980), Wilson group (1979), Jozef (1982), Tomo
(1980 quasi-coverings), Stahl permutation-partition (1980)
Me: trip 1982 visiting Southhampton, Liverpool (Peter Scott) and
Tübingen (Marston); GT(1979)
“We all lead lives of remarkable coincidences, like characters in a
Russian novel” - TT (1995)
“You never know when you’re living in a Golden Age until it’s
over.” - Jay Swain (Musicals of 1950s)
But every age is a golden age for something.....,
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