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Asymmetric graphs

A graph G is called asymmetric if it does not have a non-trivial
automorphism.
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Asymmetric graphs

Theorem (Erdös, Rényi, 1963)

Almost all finite graphs are asymmetric.
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Asymmetric graphs

A graph G is called asymmetric if it does not have a non-trivial
automorphism.

Figure: The smallest asymmetric graph
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Asymmetric graphs

A graph G is called asymmetric if it does not have a non-trivial
automorphism.

Figure: The Frucht graph, one of the five smallest asymmetric cubic graphs.
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Measure of asymmetricity

How many vertices of a graph do we need to remove to get
a symmetric graph?
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Minimal asymmetric graphs

An undirected graph G on at least two vertices is minimal
asymmetric if G is asymmetric and no proper induced subgraph of
G on at least two vertices is asymmetric.
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Minimal asymmetric graphs

Theorem (Schweitzer, Pascal; Schweitzer, Patrick, 2017)

There are exactly 18 finite minimal asymmetric undirected graphs
up to isomorphism.

Nešeťril’s conjecture: There are exactly 18 minimal asymmetric
graphs (coming in 9 complementary pairs).

Nešeťril and Sabidussi earlier established a close connection
between minimal asymmetric graphs and minimal involution-free
graphs.
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Minimal asymmetric graphs
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On the other hand...

We like structures with rich automorphism groups.
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Automorphism Groups of Graphs

Theorem (Frucht 1939)

For any finite group G there exists a graph Γ such that
Aut(Γ) ∼= G .
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Automorphism Groups of Graphs

Theorem (Frucht 1939)

For any finite group G there exists a graph Γ such that
Aut(Γ) ∼= G .

Note: We do not specify the type of action required.
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Automorphism Groups of Graphs

Theorem (Cayley)

Every group G acts regularly on itself via (left) multiplications, i.e.,
G is isomorphic to the group GL = {σg | g ∈ G} of (left)
translations:

σg (h) = g · h, for all h ∈ G

Note:

▶ Every regular action of G on a set V can be viewed as the
action of GL on G .
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Graphical Regular Representations (GRR)

A graphical regular representation of a finite group G is a finite
graph Γ with the property V (Γ) = G and Aut(Γ) = GL.

Theorem (Watkins, Imrich, Godsil, ...)

Let G be a finite group that does not have a GRR, i.e., a finite group

that does not admit a regular representation as the full automorphism

group of a graph. Then G is an abelian group of exponent greater than 2

or G is a generalized dicyclic group or G is isomorphic to one of the 13

groups : Z2
2, Z3

2, Z4
2, D3, D4, D5, A4, Q× Z3, Q× Z4,〈

a, b, c | a2 = b2 = c2 = 1, abc = bca = cab
〉
,〈

a, b | a8 = b2 = 1, b−1ab = a5
〉
,〈

a, b, c | a3 = b3 = c2 = 1, ab = ba, (ac)2 = (bc)2 = 1
〉
,〈

a, b, c | a3 = b3 = c3 = 1, ac = ca, bc = cb, b−1ab = ac
〉
.
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From vertex-transitive to asymmetric

Let G be a group of odd order.

Let graph Γ be a graphical regular representation of a group G ,
and let u ∈ V (Γ).
Consider Γ1 = Γ− u.
Then Γ1 has trivial automorphism group.
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Partial graph automorphisms

Let Γ = (V , E) be a finite graph

A partial automorphism of Γ = (V , E) is an isomorphism between
two induced subgraphs.

The set of all partial automorphisms, denoted PAut(Γ) with the
composition and partial inverse of partial maps forms an inverse
monoid.

PAut(Γ) ≤ PSym(V )
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Inverse Monoid

A set together with an associative binary operation is called a
semigroup
A semigroup having an identity element is a monoid

A monoid M is called inverse

▶ if for every a ∈ M there exists a unique element a−1 s.t.

a · a−1 · a = a

a−1 · a · a−1 = a−1
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”Archetypal” inverse semigroup PSym(X )

PSym(X ) - set of all partial permutations of X
= bijections between subsets of X (including ∅).

φ : Y → Z Y ,Z ⊆ X

Y - domain domφ
Z - range ranφ

|domφ| = |ranφ| - rank of φ

The cycle notation of classical permutations generalizes by the
addition of a notion called a path, which (unlike a cycle) ends
when it reaches the ”undefined” element.

dom(x1, x2...xk ] = {x1, x2, ..., xk−1}

ran(x1, x2...xk ] = {x2, x3, ..., xk}
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PSym(X )

▶ Operation on PSym(X ) - is composition of partial maps:
Let α and β be partial permutations of a set X ; α and β can
be composed (from left to right) on the largest domain upon
which it ”makes sense” to compose them (may be the ∅)

domαβ = [imα ∩ domβ]α−1

▶ Inverse of φ - just the usual inverse φ−1 of the bijection
φ : domφ→ ranφ

▶ Identity of PSym(X ) - is idX
▶ Local Identities: A ⊂ X - idA, idempotents

▶ Zero - PSym(X ) has also zero element - empty map - id∅
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Wagner-Preston representation

While groups can be represented as symmetries:

Theorem (Cayley)

Every (finite) group can be represented as a group of permutations
of a (finite) set.

Inverse semigroups can be represented as partial symmetries:

Theorem (Wagner-Preston)

Every (finite) inverse semigroup can be represented as the inverse
semigroup of partial bijections of a (finite) set.
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Restrictions vs. extensions

It is clear that all restrictions of an automorphism of a graph are
partial automorphisms.

But not all partial automorphisms extend to a (global)
automorphism.
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Homogeneous graphs

A graph Γ is homogeneous if any isomorphism between induced
subgraphs extends to an automorphism of Γ.

Theorem (Gardiner 1976)

A finite homogeneous graph is one of the following:

▶ a disjoint union of complete graphs of the same size

▶ a regular complete multipartite graph

▶ the 5-cycle

▶ the line graph of K3,3
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Hrushovski’s extension theorem

Theorem (Hrushovski 1992)

Let X be a finite graph. Then there exists a finite graph Z
containing X as an induced subgraph, such that every isomorphism
between induced subgraphs of X extends to an automorphism of Z .
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Extensions of partial automorphisms

Jaroslav Nešeťril, Matěj Konečný, ...
Extension property for partial automorphisms, EPPA

Let A be a structure and let B be its (induced) substructure. A is
an EPPA-witness for B if every partial automorphism of B extends
to an automorphism of A.

A class C of finite structures has EPPA if for every B ∈ C there is
A ∈ C, which is an EPPA-witness for B.

Theorem (Hrushovski 1992)

The class of all finite graphs has EPPA.
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Extensions of partial automorphisms

Jaroslav Nešeťril, Matěj Konečný, ...
Extension property for partial automorphisms, EPPA

▶ Class of all n-partite tournaments (orientations of complete
n-partite graphs) has EPPA (Eurocomb2019)

▶ The question is still open for the class of all tournaments
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Reconstruction

Definition
Let Γ = (V , E) be a finite graph and u ∈ V (Γ).
Then Γ− u is called a card.
The collection D of the cards of a graph Γ is called the deck of Γ:
D is the multiset of all induced subgraphs Γ− u, u ∈ V .

Graph reconstruction conjecture (Kelly and Ulam, 1957):

Every finite graph on at least 3 vertices is
uniquely reconstructible from its deck.
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Pseudo-similarity

Definition
Two vertices u, v ∈ V are pseudo-similar if Γ− {u} and Γ− {v}
are isomorphic, but there exists no automorphism of Γ mapping u
to v .

Figure: The Harary-Palmer Graph - the smallest graph containing a pair of

pseudo-similar vertices
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Reconstruction and symmetry

Regular (and hence vertex-transitive) graphs are easy to
reconstruct.

The reconstruction number of a graph is the least number of cards
which are required to reconstruct Γ uniquely.

(Almost all graphs have the property that there exist 3 cards in
their deck that uniquely determine the graph.)

Vertex-transitive graphs can have a large reconstruction number.
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Reconstruction and symmetry

Theorem (Myrvold, Kurshunov, Müller, Bollobas)

If a graph Γ is asymmetric and all induced subgraphs on n − 3
vertices are non-isomorphic, then any three cards of Γ reconstruct
Γ uniquely.

So, in this sense, it is easier to reconstruct asymmetric graphs then
symmetric.
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Many pseudo-similar vertices

Graphs that have several pseudo-similar vertices are interesting.

Open question:
What is the maximal number of mutually pseudo-similar vertices in
a graph of order n?
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Example with many pairs of pseudo-similar vertices

Let G be a group of odd order. Let graph Γ be a GRR of a group
G , and let u ∈ V (Γ).
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Example with many pairs of pseudo-similar vertices

Let x1 ∈ V (Γ− u). There is an automorphism α of Γ such that
α(x1) = u
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Example with many pairs of pseudo-similar vertices

and α(u) = x2. Then x1 ̸= x2 since G has odd order.
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Example with many pairs of pseudo-similar vertices

Γ− x1 − u ∼= Γ− u − x2, and therefore x1 has a pseudo-similar
mate x2.

Thus every vertex has a pseudo-similar mate.Tatiana Jajcayova Comenius University Partial symmetries of graphs



Cages

Definition
A k-regular graph Γ of girth g is called a (k, g)-cage if Γ is of
smallest possible order among all k-regular graphs of girth g .

Open problem: Does there exist a (57, 5)-graph of order 3250?

We do know that if the graph exists, it is not vertex-transitive, but
for any two vertices u, v of such graph, there would exist a partial
automorphism mapping u to v whose domain would constitute a
significant part of the graph.
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Inverse monoids of partial graph automorphisms

Main Questions:

0. Understand and describe the structure of PAut(Γ).

1. Classify finite inverse monoids that are isomorphic
to inverse monoids of partial automorphisms of a
graph

Analogue of Frucht’s theorem for groups.

2. For a specific class of representations of finite
inverse semigroups (e.g., those given by
Wagner-Preston theorem) classify finite inverse
semigroups that admit a combinatorial structure for
which the inverse semigroup of partial
automorphisms is equal to the partial bijections from
the representation.

Analogue of GRR’s for groups.
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Analogue of Frucht’s theorem

Note: The inverse semigroup of partial automorphisms of a graph
Γ = (V , E) with more than one vertex is never trivial:

u ←→ v u ←→ v

u v u v

Corollary

Not every finite inverse monoid is the inverse monoid of partial
automorphisms of a graph.
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Classification of inverse semigroups of partial
automorphisms of combinatorial structures

Theorem (Nemirovskaya 1997)

If S is a finite inverse semigroup, then there exists a weighted
graph Γ such that S ∼= PAutω(Γ).

Theorem (Sieben 2008)

The inverse semigroup of partial automorphisms of the Cayley
color graph of an inverse semigroup is isomorphic to the original
inverse semigroup.
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Structure of inverse monoids

e ∈ S is an idempotent, if e2 = e.

E (S) - set of all idempotents of S .

∀s ∈ S , ss−1, s−1s ∈ E (S) (generally different)

▶ in inverse monoids, idempotents commute

▶ they form a subsemilattice

▶ the partial order induced by this semilattice extends naturally
to the whole inverse semigroup:

s ≤ t ⇔ ∃ an idempotent e such that s = te

This is called the natural partial order
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Structure of inverse monoids

In PSym(X ),

▶ idempotents are the partial identical maps,

▶ the natural partial order is defined by restriction of domains.

PAut(Γ) of a graph Γ is a full submonoid (= contains all
idempotents) of PSym(V ).
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Structure of inverse monoids

Green’s relations:
s, t ∈ S . We define L and R:
▶ s L t ⇔ ∃ x , y ∈ S s.t. xs = t & yt = s,

▶ s R t ⇔ ∃ x , y ∈ S s.t. sx = t & ty = s.

In PSym(X ),
φ1 L φ2 ⇔ domφ1 = domφ2,
φ1 R φ2 ⇔ ranφ1 = ranφ2.
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s, t ∈ S . We define L and R:
▶ s L t ⇔ ∃ x , y ∈ S s.t. xs = t & yt = s,

▶ s R t ⇔ ∃ x , y ∈ S s.t. sx = t & ty = s.

In PSym(X ),
φ1 L φ2 ⇔ domφ1 = domφ2,
φ1 R φ2 ⇔ ranφ1 = ranφ2.
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Structure of inverse monoids

Green’s relations:

H = R ∩ L
D = R ∨ L

We can show D = R ◦ L

(1)(2)

(1)(3)
(12)

(13)
(2)(3)

(23)

(1)(23]

(1)(32]

(13](21]
(1)(23]

(13](21]

(2)(31]

(21](32]
(3)(21]

(23](31]
(3)(12]

(13](32]

(12](31]

Figure: The D-class of rank 2 partial one-to-one maps of PSym({1, 2, 3})
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Structure of inverse monoids

Green’s relations:

H = R ∩ L
D = R ◦ L

(1) _   (2)

(1) _   (3)
(12)

(13)
(2) _   (3)

(23)

(1) _   [23)

(1) _   [32)
[13) _   [21)

(2) _   [13)

[12) _   [23)

(2) _   [31)

[21) _   [32)

(3) _   [21)

[23) _   [31)

(3) _   [12)

[13) _   [32)[12) _   [31)

Figure: The D-class of rank 2 partial one-to-one maps of PSym({1, 2, 3})
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Structure of PAut(Γ) for graph Γ

Proposition (R.Jajcay, T.J., N. Szakács, M. Szendrei 2021)

For any graph Γ, the D-classes of PAut(Γ) correspond to the
isomorphism classes of induced subgraphs of Γ, that is, two
elements are D-related if and only if the subgraphs induced by
their respective domains (or images) are isomorphic.

Partial order for D-classes: ”subgraph” relation
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Example

0

(1) [12)

[21)

[31) [32) [34)

[41) [42) [43)

[23) [24)

[13) [14)

(2)

(3)

(4)

(1)(2)

(1)(3)

(1)(4)

(2)(4)

(3)(4)

(2)(3)
(12)

(13)

(14)

(24)

(34)

(23)

[123)

[314)

[241)

[341) [342)

[413) [142) [143)

[243)

[431)

[134)

[321)
(2)[13)

(1)[34)

(4)[21)

(4)[31) (4)[32)

(1)[43) (4)[12)

(3)[41)

(3)[14)

(4)[13)

(4)[23)(2)[31)

[12)[34)

[21)[43)

[14)[32)

[41)[23)

(1)(2)(3)

(2)(13)

(1)(2)(4)

(2)(3)(4)
(4)(12)

(4)(23)

(2)(4)[13)

(2)(4)[31)
(4)[123)

(4)[321)

(1)(3)(4) (134) (431)

(1)(34) (3)(14) (4)(13)

(2)(4)(13)

(1)(2)(3)(4)

Figure: The Green-class structure of partial graph automorphisms
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Structure of PAut(Γ) for graph Γ

Lemma (R.Jajcay, T.J., N. Szakács, M. Szendrei 2021)

Let Γ = (X ,E ) be a graph, and let φ ∈ PSym(X ) be a partial
permutation of rank at least 2. Then φ ∈ PAut(Γ) if and only if
φ|Y ∈ PAut(Γ) for any 2-element subset Y of domφ.

Proposition

The partial automorphism monoid S = PAut(Γ) of any
edge-colored digraph Γ has the following property:

(U) For any compatible subset A ⊆ S of partial permutations of
rank 1, if S contains the join of any two elements of A, then
S contains the join of the set A.

Proposition

If S, T are full inverse submonoids of PSym(X ) which coincide on
their elements of rank at most 2 and satisfy condition (U), then
S = T .
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When is an inverse monoid of partial permutations the
partial automorphism monoid of a graph?

Theorem (R.Jajcay, T.J., N. Szakács, M. Szendrei 2021)

Given an inverse submonoid S ≤ PSym(X ), where X is a finite set,
there exists a graph with vertex set X whose partial automorphism
monoid is S if and only if the following conditions hold:

1. S is a full inverse submonoid of PSym(X ),

2. for any compatible subset A ⊆ S of rank 1 partial
permutations, if S contains the join of any two elements of A,
then S contains the join of the set A,

3. the rank 2 elements of S form at most two D-classes,
4. the H-classes of rank 2 elements are nontrivial.
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When is an (abstract) inverse monoid
isomorphic
to the partial automorphism monoid of a graph?

Theorem (R.Jajcay, T.J., N. Szakács, M. Szendrei 2021)

Given a finite inverse monoid S , there exists a finite graph whose
partial automorphism monoid is isomorphic to S if and only if the
following conditions hold:

1. S is Boolean,

2. S is fundamental,

3. for any subset A ⊆ S of compatible 0-minimal elements, if all
2-element subsets of A have a join in S , then the set A has a
join in S ,

4. S has at most two D-classes of height 2,
5. the H-classes of the height 2 D-classes of S are nontrivial.
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Further questions

▶ Find a class of graphs, that will have an interesting
(recognizable) class of inverse monoids as their PAut(Γ)

▶ Extensions of graphs vs. extensions of monoids (Hrushovski
type of questions)

▶ PAut(C) for other combinatorial structures
...
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Thank you!

Greetings from Bratislava
Happy Holidays!
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