On the Interplay Between Global and Local Symmetries

Tatiana Jajcayová

Comenius University, Bratislava

AGTIW December 21, 2021

Tatiana Jajcayova

Comenius University Partial symmetries of graphs

・ 同 ト ・ ヨ ト ・ ヨ ト

A graph G is called *asymmetric* if it does not have a non-trivial automorphism.

回とくほとくほど

Э

Theorem (Erdös, Rényi, 1963)

Almost all finite graphs are asymmetric.

向下 イヨト イヨト

Asymmetric graphs

A graph G is called *asymmetric* if it does not have a non-trivial automorphism.

Figure: The smallest asymmetric graph

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Asymmetric graphs

A graph G is called *asymmetric* if it does not have a non-trivial automorphism.

Figure: The Frucht graph, one of the five smallest asymmetric cubic graphs.

• • = • • = •

How many vertices of a graph do we need to remove to get a symmetric graph?

• • = • • = •

An undirected graph G on at least two vertices is *minimal* asymmetric if G is asymmetric and no proper induced subgraph of G on at least two vertices is asymmetric.

A B K A B K

Theorem (Schweitzer, Pascal; Schweitzer, Patrick, 2017) There are exactly 18 finite minimal asymmetric undirected graphs up to isomorphism.

(A) (E) (A) (E) (A)

Theorem (Schweitzer, Pascal; Schweitzer, Patrick, 2017) There are exactly 18 finite minimal asymmetric undirected graphs up to isomorphism.

Nešetřil's conjecture: There are exactly 18 minimal asymmetric graphs (coming in 9 complementary pairs).

Nešetřil and Sabidussi earlier established a close connection between minimal asymmetric graphs and minimal involution-free graphs.

• • = • • = •

Minimal asymmetric graphs

Comenius University

Partial symmetries of graphs

We like structures with rich automorphism groups.

回とくほとくほど

Theorem (Frucht 1939)

For any finite group G there exists a graph Γ such that $Aut(\Gamma) \cong G$.

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

Theorem (Frucht 1939)

For any finite group G there exists a graph Γ such that $Aut(\Gamma)\cong G.$

Note: We do not specify the type of action required.

• • = • • = •

Theorem (Cayley)

Every group G acts regularly on itself via (left) multiplications, i.e., G is isomorphic to the group $G_L = \{\sigma_g \mid g \in G\}$ of (left) translations:

$$\sigma_g(h) = g \cdot h$$
, for all $h \in G$

Note:

.

Theorem (Cayley)

Every group G acts regularly on itself via (left) multiplications, i.e., G is isomorphic to the group $G_L = \{\sigma_g \mid g \in G\}$ of (left) translations:

$$\sigma_g(h) = g \cdot h$$
, for all $h \in G$

Note:

Every regular action of G on a set V can be viewed as the action of G_L on G.

(A) (E) (A) (E) (A)

A graphical regular representation of a finite group G is a finite graph Γ with the property $V(\Gamma) = G$ and $Aut(\Gamma) = G_L$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

A graphical regular representation of a finite group G is a finite graph Γ with the property $V(\Gamma) = G$ and $Aut(\Gamma) = G_L$.

Theorem (Watkins, Imrich, Godsil, ...)

Let G be a finite group that does not have a GRR, i.e., a finite group that does not admit a regular representation as the full automorphism group of a graph. Then G is an abelian group of exponent greater than 2 or G is a generalized dicyclic group or G is isomorphic to one of the 13 groups : \mathbb{Z}_2^2 , \mathbb{Z}_2^3 , \mathbb{Z}_2^4 , \mathcal{D}_3 , \mathcal{D}_4 , \mathcal{D}_5 , \mathcal{A}_4 , $\mathcal{Q} \times \mathbb{Z}_3$, $\mathcal{Q} \times \mathbb{Z}_4$, $\langle a, b, c \mid a^2 = b^2 = c^2 = 1$, $abc = bca = cab \rangle$, $\langle a, b \mid a^8 = b^2 = 1$, $b^{-1}ab = a^5 \rangle$, $\langle a, b, c \mid a^3 = b^3 = c^2 = 1$, ab = ba, $(ac)^2 = (bc)^2 = 1 \rangle$, $\langle a, b, c \mid a^3 = b^3 = c^3 = 1$, ac = ca, bc = cb, $b^{-1}ab = ac \rangle$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Let G be a group of odd order.

A B K A B K

Let G be a group of odd order.

Let graph Γ be a graphical regular representation of a group G, and let $u \in V(\Gamma)$.

• • = • • = •

Let G be a group of odd order.

Let graph Γ be a graphical regular representation of a group G, and let $u \in V(\Gamma)$.

Consider $\Gamma_1 = \Gamma - u$.

Then Γ_1 has trivial automorphism group.

A B K A B K

Let G be a group of odd order.

Let graph Γ be a graphical regular representation of a group G, and let $u \in V(\Gamma)$.

Consider
$$\Gamma_1 = \Gamma - u$$
.

Then Γ_1 has trivial automorphism group.

Let G be a group of odd order.

Let graph Γ be a graphical regular representation of a group G, and let $u \in V(\Gamma)$.

Consider
$$\Gamma_1 = \Gamma - u$$
.

Then Γ_1 has trivial automorphism group.

Let G be a group of odd order.

Let graph Γ be a graphical regular representation of a group G, and let $u \in V(\Gamma)$.

Consider
$$\Gamma_1 = \Gamma - u$$
.

Then Γ_1 has trivial automorphism group.

Tatiana Jajcayova

Partial graph automorphisms

Let $\Gamma = (V, \mathcal{E})$ be a finite graph

A partial automorphism of $\Gamma = (V, \mathcal{E})$ is an isomorphism between two *induced* subgraphs.

Partial graph automorphisms

Let $\Gamma = (V, \mathcal{E})$ be a finite graph

A partial automorphism of $\Gamma = (V, \mathcal{E})$ is an isomorphism between two *induced* subgraphs.

A 3 5 A 3 5

Partial graph automorphisms

Let $\Gamma = (V, \mathcal{E})$ be a finite graph

A partial automorphism of $\Gamma = (V, \mathcal{E})$ is an isomorphism between two *induced* subgraphs.

The set of all partial automorphisms, denoted $PAut(\Gamma)$ with the composition and partial inverse of partial maps forms an inverse monoid.

 $\mathsf{PAut}(\Gamma) \leq \mathsf{PSym}(V)$

4 B M 4 B M

A set together with an associative binary operation is called a *semigroup*

A semigroup having an identity element is a monoid

• • = • • = •

A set together with an associative binary operation is called a *semigroup*

A semigroup having an identity element is a monoid

A monoid *M* is called **inverse**

▶ if for every $a \in M$ there exists a unique element a^{-1} s.t.

$$a \cdot a^{-1} \cdot a = a$$
$$a^{-1} \cdot a \cdot a^{-1} = a^{-1}$$

A B K A B K

"Archetypal" inverse semigroup PSym(X)

PSym(X) - set of all partial permutations of X = bijections between subsets of X (including \emptyset).

$$\varphi: Y \to Z \qquad Y, Z \subseteq X$$

Y - domain $dom\varphi$ Z - range $ran\varphi$

 $|\mathit{dom} \varphi| = |\mathit{ran} \varphi|$ - rank of φ

伺 と く き と く き と

"Archetypal" inverse semigroup PSym(X)

PSym(X) - set of all partial permutations of X = bijections between subsets of X (including \emptyset).

$$\varphi: Y \to Z \qquad Y, Z \subseteq X$$

- Y domain $dom\varphi$
- Z range $ran\varphi$

 $|\mathit{dom} \varphi| = |\mathit{ran} \varphi|$ - rank of φ

The cycle notation of classical permutations generalizes by the addition of a notion called a path, which (unlike a cycle) ends when it reaches the "undefined" element.

dom
$$(x_1, x_2...x_k] = \{x_1, x_2, ..., x_{k-1}\}$$

ran $(x_1, x_2...x_k] = \{x_2, x_3, ..., x_k\}$

• • = • • = •

 $\operatorname{dom} \alpha\beta = [\operatorname{im} \alpha \cap \operatorname{dom} \beta]\alpha^{-1}$

・ 同 ト ・ ヨ ト ・ ヨ ト …

$$\operatorname{dom} \alpha\beta = [\operatorname{im} \alpha \cap \operatorname{dom} \beta]\alpha^{-1}$$

▶ Inverse of φ - just the usual inverse φ^{-1} of the bijection φ : $dom\varphi \rightarrow ran\varphi$

向下 イヨト イヨト

$$\operatorname{dom} \alpha\beta = [\operatorname{im} \alpha \cap \operatorname{dom} \beta]\alpha^{-1}$$

- lnverse of φ just the usual inverse φ^{-1} of the bijection φ : $dom\varphi \rightarrow ran\varphi$
- Identity of PSym(X) is id_X

同トイヨトイヨト

$$\operatorname{dom} \alpha\beta = [\operatorname{im} \alpha \cap \operatorname{dom} \beta]\alpha^{-1}$$

- lnverse of φ just the usual inverse φ^{-1} of the bijection φ : $dom\varphi \rightarrow ran\varphi$
- Identity of PSym(X) is id_X
- ▶ Local Identities: $A \subset X id_A$, idempotents

(周) (日) (日)

$$\operatorname{dom} \alpha\beta = [\operatorname{im} \alpha \cap \operatorname{dom} \beta]\alpha^{-1}$$

- lnverse of φ just the usual inverse φ^{-1} of the bijection φ : $dom\varphi \rightarrow ran\varphi$
- ldentity of PSym(X) is id_X
- ▶ Local Identities: $A \subset X id_A$, idempotents
- ▶ Zero PSym(X) has also zero element empty map id_{\emptyset}

・ロト ・ 同ト ・ ヨト ・ ヨト

While groups can be represented as symmetries:

Theorem (Cayley)

Every (finite) group can be represented as a group of permutations of a (finite) set.

Inverse semigroups can be represented as partial symmetries:

Theorem (Wagner-Preston)

Every (finite) inverse semigroup can be represented as the inverse semigroup of partial bijections of a (finite) set.

同下 くほと くほとう
It is clear that all restrictions of an automorphism of a graph are partial automorphisms.

But not all partial automorphisms extend to a (global) automorphism.

(A) (E) (A) (E) (A)

A graph Γ is *homogeneous* if any isomorphism between induced subgraphs extends to an automorphism of Γ .

伺 ト イヨト イヨト

A graph Γ is *homogeneous* if any isomorphism between induced subgraphs extends to an automorphism of Γ .

Theorem (Gardiner 1976)

A finite homogeneous graph is one of the following:

- a disjoint union of complete graphs of the same size
- a regular complete multipartite graph
- the 5-cycle
- ► the line graph of K_{3,3}

A B K A B K

Theorem (Hrushovski 1992)

Let X be a finite graph. Then there exists a finite graph Z containing X as an induced subgraph, such that every isomorphism between induced subgraphs of X extends to an automorphism of Z.

Extensions of partial automorphisms

Jaroslav Nešetřil, Matěj Konečný, ...

Extension property for partial automorphisms, EPPA

Jaroslav Nešetřil, Matěj Konečný, ... Extension property for partial automorphisms, EPPA

Let A be a structure and let B be its (induced) substructure. A is an EPPA-witness for B if every partial automorphism of B extends to an automorphism of A.

A class C of **finite** structures has EPPA if for every $B \in C$ there is $A \in C$, which is an EPPA-witness for B.

Jaroslav Nešetřil, Matěj Konečný, ... Extension property for partial automorphisms, EPPA

Let A be a structure and let B be its (induced) substructure. A is an EPPA-witness for B if every partial automorphism of B extends to an automorphism of A.

A class C of **finite** structures has EPPA if for every $B \in C$ there is $A \in C$, which is an EPPA-witness for B.

Theorem (Hrushovski 1992)

The class of all finite graphs has EPPA.

Jaroslav Nešetřil, Matěj Konečný, ... Extension property for partial automorphisms, EPPA

- Class of all n-partite tournaments (orientations of complete n-partite graphs) has EPPA (Eurocomb2019)
- ▶ The question is still open for the class of *all* tournaments

Let $\Gamma = (V, \mathcal{E})$ be a finite graph and $u \in V(\Gamma)$.

Then $\Gamma - u$ is called a *card*.

The collection \mathcal{D} of the cards of a graph Γ is called the **deck** of Γ : \mathcal{D} is the multiset of all induced subgraphs $\Gamma - u$, $u \in V$.

Let $\Gamma = (V, \mathcal{E})$ be a finite graph and $u \in V(\Gamma)$.

Then $\Gamma - u$ is called a *card*.

The collection \mathcal{D} of the cards of a graph Γ is called the **deck** of Γ : \mathcal{D} is the multiset of all induced subgraphs $\Gamma - u$, $u \in V$.

Graph reconstruction conjecture (Kelly and Ulam, 1957):

Every finite graph on at least 3 vertices is uniquely reconstructible from its deck.

Let $\Gamma = (V, \mathcal{E})$ be a finite graph and $u \in V(\Gamma)$.

Then $\Gamma - u$ is called a *card*.

The collection \mathcal{D} of the cards of a graph Γ is called the **deck** of Γ : \mathcal{D} is the multiset of all induced subgraphs $\Gamma - u$, $u \in V$.

Graph reconstruction conjecture (Kelly and Ulam, 1957):

Every finite graph on at least 3 vertices is uniquely reconstructible from its deck.

Two vertices $u, v \in V$ are pseudo-similar if $\Gamma - \{u\}$ and $\Gamma - \{v\}$ are isomorphic, but there exists no automorphism of Γ mapping u to v.

向下 イヨト イヨト

Two vertices $u, v \in V$ are pseudo-similar if $\Gamma - \{u\}$ and $\Gamma - \{v\}$ are isomorphic, but there exists no automorphism of Γ mapping u to v.

Figure: The Harary-Palmer Graph - the smallest graph containing a pair of pseudo-similar vertices

・ 同 ト ・ ヨ ト ・ ヨ ト

Regular (and hence vertex-transitive) graphs are easy to reconstruct.

Regular (and hence vertex-transitive) graphs are easy to reconstruct.

The *reconstruction number* of a graph is the least number of cards which are required to reconstruct Γ uniquely.

(Almost all graphs have the property that there exist 3 cards in their deck that uniquely determine the graph.)

4 B M 4 B M

Regular (and hence vertex-transitive) graphs are easy to reconstruct.

The *reconstruction number* of a graph is the least number of cards which are required to reconstruct Γ uniquely.

(Almost all graphs have the property that there exist 3 cards in their deck that uniquely determine the graph.)

Vertex-transitive graphs can have a large reconstruction number.

A B K A B K

Theorem (Myrvold, Kurshunov, Müller, Bollobas)

If a graph Γ is asymmetric and all induced subgraphs on n-3 vertices are non-isomorphic, then any three cards of Γ reconstruct Γ uniquely.

Theorem (Myrvold, Kurshunov, Müller, Bollobas)

If a graph Γ is asymmetric and all induced subgraphs on n-3 vertices are non-isomorphic, then any three cards of Γ reconstruct Γ uniquely.

So, in this sense, it is easier to reconstruct asymmetric graphs then symmetric.

Graphs that have several pseudo-similar vertices are interesting.

Graphs that have several pseudo-similar vertices are interesting.

Open question:

What is the maximal number of mutually pseudo-similar vertices in a graph of order n?

A B K A B K

Let G be a group of *odd* order. Let graph Γ be a GRR of a group G, and let $u \in V(\Gamma)$.

Let $x_1 \in V(\Gamma - u)$. There is an automorphism α of Γ such that $\alpha(x_1) = u$

向下 イヨト イヨト

and $\alpha(u) = x_2$. Then $x_1 \neq x_2$ since G has odd order.

 $\Gamma - x_1 - u \cong \Gamma - u - x_2$, and therefore x_1 has a pseudo-similar mate x_2 .

| ∃ >

A k-regular graph Γ of girth g is called a (k, g)-cage if Γ is of smallest possible order among all k-regular graphs of girth g.

Open problem: Does there exist a (57,5)-graph of order 3250?

向下 イヨト イヨト

A k-regular graph Γ of girth g is called a (k,g)-cage if Γ is of smallest possible order among all k-regular graphs of girth g.

Open problem: Does there exist a (57,5)-graph of order 3250?

We do know that if the graph exists, it is not vertex-transitive, but for any two vertices u, v of such graph, there would exist a partial automorphism mapping u to v whose domain would constitute a significant part of the graph.

Main Questions:

0. Understand and describe the structure of $PAut(\Gamma)$.

1. Classify finite inverse monoids that are *isomorphic* to inverse monoids of partial automorphisms of a graph

Analogue of Frucht's theorem for groups.

2. For a specific class of representations of finite inverse semigroups (e.g., those given by Wagner-Preston theorem) classify finite inverse semigroups that admit a combinatorial structure for which the inverse semigroup of partial automorphisms is *equal to* the partial bijections from the representation.

Analogue of GRR's for groups.

ヘロト ヘ回ト ヘヨト ヘヨト

Note: The inverse semigroup of partial automorphisms of a graph $\Gamma = (V, \mathcal{E})$ with more than one vertex is never trivial:

Note: The inverse semigroup of partial automorphisms of a graph $\Gamma = (V, \mathcal{E})$ with more than one vertex is never trivial:

通 とう ほとう きょう

Э

Note: The inverse semigroup of partial automorphisms of a graph $\Gamma = (V, \mathcal{E})$ with more than one vertex is never trivial:

Corollary

Not every finite inverse monoid is the inverse monoid of partial automorphisms of a graph.

Classification of inverse semigroups of partial automorphisms of combinatorial structures

Theorem (Nemirovskaya 1997)

If S is a finite inverse semigroup, then there exists a weighted graph Γ such that $S \cong PAut_{\omega}(\Gamma)$.

Theorem (Sieben 2008)

The inverse semigroup of partial automorphisms of the Cayley color graph of an inverse semigroup is isomorphic to the original inverse semigroup.

 $e \in S$ is an idempotent, if $e^2 = e$.

E(S) - set of all idempotents of S.

 $\forall s \in S, \ ss^{-1}, s^{-1}s \in E(S)$ (generally different)

- in inverse monoids, idempotents commute
- they form a subsemilattice
- the partial order induced by this semilattice extends naturally to the whole inverse semigroup:

 $s \leq t \Leftrightarrow \exists$ an idempotent e such that s = te

This is called the natural partial order

In PSym(X),

- idempotents are the partial identical maps,
- the natural partial order is defined by restriction of domains.

$PAut(\Gamma)$ of a graph Γ is a *full* submonoid (= contains all idempotents) of PSym(V).

A B K A B K

Green's relations:

- $s, t \in S$. We define \mathcal{L} and \mathcal{R} :
 - ► $s \ \mathcal{L} t \Leftrightarrow \exists x, y \in S \text{ s.t. } xs = t \& yt = s$,
 - ▶ $s \mathcal{R} t \Leftrightarrow \exists x, y \in S \text{ s.t. } sx = t \& ty = s.$

Green's relations:

- $s, t \in S$. We define \mathcal{L} and \mathcal{R} :
 - ► $s \ \mathcal{L} t \Leftrightarrow \exists x, y \in S \text{ s.t. } xs = t \& yt = s$,
 - ▶ $s \mathcal{R} t \Leftrightarrow \exists x, y \in S \text{ s.t. } sx = t \& ty = s.$

In PSym(X), $\varphi_1 \mathrel{\mathcal{L}} \varphi_2 \Leftrightarrow \operatorname{dom} \varphi_1 = \operatorname{dom} \varphi_2$, $\varphi_1 \mathrel{\mathcal{R}} \varphi_2 \Leftrightarrow \operatorname{ran} \varphi_1 = \operatorname{ran} \varphi_2$.

4 B K 4 B K

Green's relations:

 $\mathcal{H} = \mathcal{R} \cap \mathcal{L}$ $\mathcal{D} = \mathcal{R} \lor \mathcal{L}$

▶ ★ 唐 ▶ ★ 唐 ▶
Green's relations:

$$\begin{split} \mathcal{H} &= \mathcal{R} \cap \mathcal{L} \\ \mathcal{D} &= \mathcal{R} \lor \mathcal{L} \\ \text{We can show } \mathcal{D} &= \mathcal{R} \circ \mathcal{L} \end{split}$$

Figure: The D-class of rank 2 partial one-to-one maps of PSym({1,2,3})

・ 同 ト ・ ヨ ト ・ ヨ ト

Green's relations:

 $\mathcal{H} = \mathcal{R} \cap \mathcal{L}$ $\mathcal{D} = \mathcal{R} \circ \mathcal{L}$

Figure: The D-class of rank 2 partial one-to-one maps of PSym({1, 2, 3})

(日本) (日本) (日本)

Э

Proposition (R.Jajcay, T.J., N. Szakács, M. Szendrei 2021) For any graph Γ , the \mathcal{D} -classes of PAut(Γ) correspond to the isomorphism classes of induced subgraphs of Γ , that is, two elements are \mathcal{D} -related if and only if the subgraphs induced by their respective domains (or images) are isomorphic.

Proposition (R.Jajcay, T.J., N. Szakács, M. Szendrei 2021) For any graph Γ , the D-classes of PAut(Γ) correspond to the isomorphism classes of induced subgraphs of Γ , that is, two elements are D-related if and only if the subgraphs induced by their respective domains (or images) are isomorphic.

Partial order for \mathcal{D} -classes: "subgraph" relation

Example

Figure: The Green-class structure of partial graph automorphisms

Tatiana Jajcayova

< ∃→

Э

Structure of $PAut(\Gamma)$ for graph Γ

Lemma (R.Jajcay, T.J., N. Szakács, M. Szendrei 2021) Let $\Gamma = (X, E)$ be a graph, and let $\varphi \in PSym(X)$ be a partial permutation of rank at least 2. Then $\varphi \in PAut(\Gamma)$ if and only if

 $\varphi|_Y \in \mathsf{PAut}(\Gamma)$ for any 2-element subset Y of dom φ .

Proposition

The partial automorphism monoid $S = PAut(\Gamma)$ of any edge-colored digraph Γ has the following property:

(U) For any compatible subset $A \subseteq S$ of partial permutations of rank 1, if S contains the join of any two elements of A, then S contains the join of the set A.

Proposition

If S, T are full inverse submonoids of PSym(X) which coincide on their elements of rank at most 2 and satisfy condition (U), then S = T.

Theorem (R.Jajcay, T.J., N. Szakács, M. Szendrei 2021)

Given an inverse submonoid $S \leq PSym(X)$, where X is a finite set, there exists a graph with vertex set X whose partial automorphism monoid is S if and only if the following conditions hold:

- 1. S is a full inverse submonoid of PSym(X),
- 2. for any compatible subset $A \subseteq S$ of rank 1 partial permutations, if S contains the join of any two elements of A, then S contains the join of the set A,
- 3. the rank 2 elements of S form at most two D-classes,
- 4. the *H*-classes of rank 2 elements are nontrivial.

・ 同 ト ・ ヨ ト ・ ヨ ト

When is an (abstract) inverse monoid *isomorphic* to the partial automorphism monoid of a graph?

Theorem (R.Jajcay, T.J., N. Szakács, M. Szendrei 2021)

Given a finite inverse monoid S, there exists a finite graph whose partial automorphism monoid is isomorphic to S if and only if the following conditions hold:

- 1. S is Boolean,
- 2. *S* is fundamental,
- for any subset A ⊆ S of compatible 0-minimal elements, if all 2-element subsets of A have a join in S, then the set A has a join in S,
- 4. S has at most two D-classes of height 2,
- 5. the \mathcal{H} -classes of the height 2 \mathcal{D} -classes of S are nontrivial.

(E) (E)

- Find a class of graphs, that will have an interesting (recognizable) class of inverse monoids as their PAut(Γ)
- Extensions of graphs vs. extensions of monoids (Hrushovski type of questions)
- ▶ PAut(C) for other combinatorial structures

A B K A B K

Thank you!

Tatiana Jajcayova

Comenius University Partial symmetries of graphs

イロト スピト メヨト メヨト

Э

Thank you!

Greetings from Bratislava Happy Holidays!

Tatiana Jajcayova