(Closed) distance magic circulants

Štefko Miklavič
University of Primorska, Slovenia
Joint work with P. Šparl, B. Fernández, R. Maleki and R. Sarobidy

Outline

Notation, definitions and examples

Motivation and related concepts

Regular distance magic graphs

Circulant graphs

Distance magic circulant graphs with valency 4 and 6

Closed distance magic circulant graphs

Notation, definitions and examples

Graphs and labelings

Graph

- 「 - finite, simple graph (no loops, no multiple edges)
- V - vertex set of Γ
- $n=|V|$
- for $x \in V$ we denote by $\Gamma(x)$ the set of neighbours of x
- for $x \in V$ we let $\Gamma[x]=\{x\} \cup \Gamma(x)$

Graphs and labelings

Graph

- Γ - finite, simple graph (no loops, no multiple edges)
- V - vertex set of Γ
- $n=|V|$
- for $x \in V$ we denote by $\Gamma(x)$ the set of neighbours of x
- for $x \in V$ we let $\Gamma[x]=\{x\} \cup \Gamma(x)$

Labeling

A labeling of Γ is a map $\ell: V \mapsto \mathbb{R}$.

Graphs and labelings

Weight of a vertex

Let ℓ be a labeling of Γ. For $x \in V$ we define

$$
w(x)=w_{\ell}(x)=\sum_{y \in \Gamma(x)} \ell(y) .
$$

and

$$
\bar{w}(x)=\bar{w}_{\ell}(x)=\sum_{y \in \Gamma[x]} \ell(y) .
$$

Graphs and labelings

Weight of a vertex

Let ℓ be a labeling of Γ. For $x \in V$ we define

$$
w(x)=w_{\ell}(x)=\sum_{y \in \Gamma(x)} \ell(y) .
$$

and

$$
\bar{w}(x)=\bar{w}_{\ell}(x)=\sum_{y \in \Gamma[x]} \ell(y) .
$$

We refer to $w(x)$ and $\bar{w}(x)$ as weight and closed weight of vertex x, respectively.

Distance Magic Graphs

Distance Magic Graphs
Graph Γ is said to be distance magic, if there exist a bijective labeling $\ell: V \mapsto\{1,2, \ldots, n\}$ of Γ and a constant r, such that $w(x)=r$ for every $x \in V$.

Distance Magic Graphs

Distance Magic Graphs

Graph Γ is said to be distance magic, if there exist a bijective labeling $\ell: V \mapsto\{1,2, \ldots, n\}$ of Γ and a constant r, such that $w(x)=r$ for every $x \in V$.

In this case:

- ℓ - distance magic labeling of Γ
- r - magic constant of Γ

Distance Magic Graphs - examples

Distance Magic Graphs - examples

More general, hypercubes Q_{D} with $D \equiv 2(\bmod 4)$ are distance-magic.

Distance Magic Graphs - examples

Distance Magic Graphs - nonexamples

- Complete graphs K_{n} for $n \geq 2$
- Cycles C_{n} for $n \geq 5$
- Hypercubes Q_{D} with $D \not \equiv 2(\bmod 4)$

Motivation and related concepts

Distance Magic Graphs - couple of comments

- Application - tournaments

Distance Magic Graphs - couple of comments

- Application - tournaments
- Related concepts (closed distance magic graphs, d-distance magic graphs, anti distance magic graphs, group distance magic graphs, ...)

Regular distance magic graphs

Regular Distance Magic Graphs

Assume now that Γ is a regular distance magic graph (with valency k, distance magic labeling ℓ and magic constant r).

Regular Distance Magic Graphs

Assume now that Γ is a regular distance magic graph (with valency k, distance magic labeling ℓ and magic constant r).

$$
\sum_{x \in V} \ell(x)=1+2+\cdots+n=\frac{n(n+1)}{2}
$$

Regular Distance Magic Graphs

Assume now that Γ is a regular distance magic graph (with valency k, distance magic labeling ℓ and magic constant r).

$$
\sum_{x \in V} \ell(x)=1+2+\cdots+n=\frac{n(n+1)}{2}
$$

$$
\sum_{x \in V} \ell(x)=\frac{1}{k} \sum_{x \in V} \sum_{y \in \Gamma(x)} \ell(y)
$$

Regular Distance Magic Graphs

Assume now that Γ is a regular distance magic graph (with valency k, distance magic labeling ℓ and magic constant r).

$$
\sum_{x \in V} \ell(x)=1+2+\cdots+n=\frac{n(n+1)}{2}
$$

$$
\sum_{x \in v} f(x)=\frac{1}{k} \sum_{x \in v \in \in \in(x)} \sum_{n} f(x)=\frac{n}{k}
$$

Regular Distance Magic Graphs

Therefore

$$
r=\frac{k(n+1)}{2}
$$

Regular Distance Magic Graphs

Therefore

$$
r=\frac{k(n+1)}{2}
$$

In particular, k is even.

Regular Distance Magic Graphs

Assume Γ is a regular distance magic graph (with evan valency k, distance magic labeling ℓ and magic constant r).

Regular Distance Magic Graphs

Assume Γ is a regular distance magic graph (with evan valency k, distance magic labeling ℓ and magic constant r).

For $a, b \in \mathbb{R}, a \neq 0$, and $x \in V$ define

$$
\ell^{\prime}(x)=a \ell(x)+b
$$

Regular Distance Magic Graphs

Assume Γ is a regular distance magic graph (with evan valency k, distance magic labeling ℓ and magic constant r).

For $a, b \in \mathbb{R}, a \neq 0$, and $x \in V$ define

$$
\ell^{\prime}(x)=a \ell(x)+b
$$

Then

$$
w^{\prime}(x)=\sum_{y \in \Gamma(x)} \ell^{\prime}(y)
$$

Regular Distance Magic Graphs

Assume Γ is a regular distance magic graph (with evan valency k, distance magic labeling ℓ and magic constant r).

For $a, b \in \mathbb{R}, a \neq 0$, and $x \in V$ define

$$
\ell^{\prime}(x)=a \ell(x)+b
$$

Then

$$
w^{\prime}(x)=\sum_{y \in \Gamma(x)} \ell^{\prime}(y)=\sum_{y \in \Gamma(x)}(a \ell(y)+b)
$$

Regular Distance Magic Graphs

Assume Γ is a regular distance magic graph (with evan valency k, distance magic labeling ℓ and magic constant r).

For $a, b \in \mathbb{R}, a \neq 0$, and $x \in V$ define

$$
\ell^{\prime}(x)=a \ell(x)+b
$$

Then

$$
w^{\prime}(x)=\sum_{y \in \Gamma(x)} \ell^{\prime}(y)=\sum_{y \in \Gamma(x)}(a \ell(y)+b)=a r+b k
$$

Regular Distance Magic Graphs

In particular, if $a=1$ and $b=-r / k=-(n+1) / 2$, then
$w^{\prime}(x)=0$ for every $x \in V$.

Regular Distance Magic Graphs

In particular, if $a=1$ and $b=-r / k=-(n+1) / 2$, then
$w^{\prime}(x)=0$ for every $x \in V$.

Theorem

Assume Γ is a regular distance magic graph (with evan valency k, distance magic labeling ℓ and magic constant r). Let $V=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$. For $x \in V$ we let $\ell^{\prime}(x)=\ell(x)-(n+1) / 2$.
Then vector

$$
\left(\ell^{\prime}\left(x_{1}\right), \ell^{\prime}\left(x_{2}\right), \ldots, \ell^{\prime}\left(x_{n}\right)\right)^{T}
$$

is an eigenvector of Γ with eigenvalue 0 .

Regular Distance Magic Graphs

In particular, if $a=1$ and $b=-r / k=-(n+1) / 2$, then
$w^{\prime}(x)=0$ for every $x \in V$.

Theorem

Assume Γ is a regular distance magic graph (with evan valency k, distance magic labeling ℓ and magic constant r). Let

$$
V=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\} . \text { For } x \in V \text { we let } \ell^{\prime}(x)=\ell(x)-(n+1) / 2
$$

Then vector

$$
\left(\ell^{\prime}\left(x_{1}\right), \ell^{\prime}\left(x_{2}\right), \ldots, \ell^{\prime}\left(x_{n}\right)\right)^{T}
$$

is an eigenvector of Γ with eigenvalue 0 .

In particular, if 0 is not an eigenvalue of Γ, then Γ is not distance magic.

Regular Distance Magic Graphs

Theorem

Assume Γ is a regular graph (with evan valency k). Then Γ is distance magic if and only if 0 is an eigenvalue of Γ and there exists an eigenvector \mathbf{w} for the eigenvalue 0 with the property that a certain permutation of its entries results in the arithmetic sequence

$$
\frac{1-n}{2}, \frac{3-n}{2}, \frac{5-n}{2}, \ldots, \frac{n-1}{2}
$$

Regular Distance Magic Graphs

Theorem

Assume Γ is a regular graph (with evan valency k). Then Γ is distance magic if and only if 0 is an eigenvalue of Γ and there exists an eigenvector \mathbf{w} for the eigenvalue 0 with the property that a certain permutation of its entries results in the arithmetic sequence

$$
\frac{1-n}{2}, \frac{3-n}{2}, \frac{5-n}{2}, \ldots, \frac{n-1}{2} .
$$

Observe: such an eigenvector wexists if and only if there exists en eigenvector \mathbf{w}_{1} for the eigenvalue 0 with the property that a certain permutation of its entries results in the arithmetic sequence $1-n, 3-n, 5-n, \ldots, n-1$.

Circulant graphs

Circulant Graphs

Circulant graphs

Let \mathbb{Z}_{n} denote the cyclic group of order n and let $S \subseteq \mathbb{Z}_{n}$ be such that $0 \notin S$ and $S=-S$. Let $\operatorname{Circ}\left(\mathbb{Z}_{n} ; S\right)$ be a graph with vertex set \mathbb{Z}_{n}, where $x, y \in \mathbb{Z}_{n}$ are adjacent if and only if $x-y \in S$.

Circulant Graphs

Circulant graphs

Let \mathbb{Z}_{n} denote the cyclic group of order n and let $S \subseteq \mathbb{Z}_{n}$ be such that $0 \notin S$ and $S=-S$. Let $\operatorname{Circ}\left(\mathbb{Z}_{n} ; S\right)$ be a graph with vertex set \mathbb{Z}_{n}, where $x, y \in \mathbb{Z}_{n}$ are adjacent if and only if $x-y \in S$.

Observe that $\operatorname{Circ}\left(\mathbb{Z}_{n} ; S\right)$ is regular with valency $|S|$ and is connected if and only if S generates \mathbb{Z}_{n}.

Tetravalent Circulant Graphs

Theorem (Cichacz and Froncek, 2016)
Let $S=\{ \pm 1, \pm b\} \subseteq \mathbb{Z}_{n}, b \neq n / 2$ odd. Then $\operatorname{Circ}\left(\mathbb{Z}_{n} ; S\right)$ is distance magic if and only if $b^{2}-1=n(2 t+1)$ for some nonnegative integer t, or $n=2 b+2$.

Tetravalent Circulant Graphs

Theorem (Cichacz and Froncek, 2016)

Let $S=\{ \pm 1, \pm b\} \subseteq \mathbb{Z}_{n}, b \neq n / 2$ odd. Then $\operatorname{Circ}\left(\mathbb{Z}_{n} ; S\right)$ is distance magic if and only if $b^{2}-1=n(2 t+1)$ for some nonnegative integer t, or $n=2 b+2$.

Open problem (Cichacz and Froncek, 2016)

Characterize distance magic circulant graphs $\operatorname{Circ}\left(\mathbb{Z}_{n} ; S\right)$, where $S=\{ \pm 1, \pm b\} \subseteq \mathbb{Z}_{n}$ with $b \neq n / 2$ even.

Characters of cyclic groups

Characters of cyclic groups

Let \mathbb{Z}_{n} denote the cyclic group of order n. A character of \mathbb{Z}_{n} is a homomorphism from \mathbb{Z}_{n} to the multiplicative group $\mathbb{C} \backslash\{0\}$.

Characters of cyclic groups

Characters of cyclic groups

Let \mathbb{Z}_{n} denote the cyclic group of order n. A character of \mathbb{Z}_{n} is a homomorphism from \mathbb{Z}_{n} to the multiplicative group $\mathbb{C} \backslash\{0\}$.

Theorem

Let \mathbf{i} denote the imaginary unit of \mathbb{C}. The characters of \mathbb{Z}_{n} are precisely the homomorphisms

$$
\chi_{j}: \mathbb{Z}_{n} \rightarrow \mathbb{C} \backslash\{0\} \quad(0 \leq j \leq n-1)
$$

where for each $x \in \mathbb{Z}_{n}$ we have

$$
\chi_{j}(x)=\left(e^{\frac{2 \pi i}{n}}\right)^{j x}=\cos \left(\frac{2 \pi j x}{n}\right)+\mathbf{i} \sin \left(\frac{2 \pi j x}{n}\right)
$$

Eigenvalues of circulant graphs

Theorem
The spectrum of $\operatorname{Circ}\left(\mathbb{Z}_{n} ; S\right)$ is equal to

$$
\left\{\chi_{j}(S) \mid 0 \leq j \leq n-1\right\}
$$

where

$$
\chi_{j}(S)=\sum_{s \in S} \chi_{j}(s)
$$

Eigenvalues of circulant graphs

Theorem

The spectrum of $\operatorname{Circ}\left(\mathbb{Z}_{n} ; S\right)$ is equal to

$$
\left\{\chi_{j}(S) \mid 0 \leq j \leq n-1\right\}
$$

where

$$
\chi_{j}(S)=\sum_{s \in S} \chi_{j}(s)
$$

Moreover,

$$
\left(\chi_{j}(0), \chi_{j}(1), \ldots, \chi_{j}(n-1)\right)^{T}
$$

is the eigenvector corresponding to the eigenvalue $\chi_{j}(S)$.

Distance magic circulant graphs with valency 4 and 6

Circulant graphs with valency 4

Let $\Gamma=\operatorname{Circ}\left(\mathbb{Z}_{n} ;\{ \pm a, \pm b\}\right)$, where $1 \leq a<b<n / 2$ and $\operatorname{gcd}(n, a, b)=1$, be a connected tetravalent circulant. Pick $0 \leq j \leq n-1$. Then $\chi_{j}(S)=0$ if and only if

$$
\cos \frac{2 \pi j a}{n}+\cos \frac{2 \pi j b}{n}=0
$$

Circulant graphs with valency 4

Let $\Gamma=\operatorname{Circ}\left(\mathbb{Z}_{n} ;\{ \pm a, \pm b\}\right)$, where $1 \leq a<b<n / 2$ and $\operatorname{gcd}(n, a, b)=1$, be a connected tetravalent circulant. Pick $0 \leq j \leq n-1$. Then $\chi_{j}(S)=0$ if and only if

$$
\cos \frac{2 \pi j a}{n}+\cos \frac{2 \pi j b}{n}=0
$$

if and only if

$$
\begin{gathered}
j=\frac{n(2 k+1)}{2(b+a)} \in\{0,1, \ldots, n-1\} \text { for some } 0 \leq k \leq b+a-1, \text { or } \\
j=\frac{n(2 k+1)}{2(b-a)} \in\{0,1, \ldots, n-1\} \text { for some } 0 \leq k \leq b-a-1 .
\end{gathered}
$$

Circulant graphs with valency 4

Theorem (M. \& Šparl, 2021)
Let $\Gamma=\operatorname{Circ}\left(\mathbb{Z}_{n} ;\{ \pm a, \pm b\}\right)$, where $1 \leq a<b<n / 2$ and $\operatorname{gcd}(n, a, b)=1$, be a connected tetravalent circulant. Then Γ is distance magic if and only if n is even, at least one of a and b is coprime to n, and Γ is isomorphic to $\operatorname{Circ}\left(\mathbb{Z}_{n} ;\{ \pm 1, \pm c\}\right)$ for some $1<c<n / 2$ such that the following holds:

- if c is even then $2\left(c^{2}-1\right)$ is an odd multiple of n;
- if c is odd then either $c^{2}-1$ is an odd multiple of n or $n=2 c+2 \equiv 4(\bmod 8)$.

Circulant graphs with valency 6

Let $\Gamma=\operatorname{Circ}\left(\mathbb{Z}_{n} ;\{ \pm a, \pm b, \pm c\}\right)$, where $1 \leq a<b<c<n / 2$ and $\operatorname{gcd}(n, a, b, c)=1$, be a connected circulant with valency 6 . Pick $0 \leq j \leq n-1$. Then $\chi_{j}(S)=0$ if and only if

$$
\begin{equation*}
\cos \frac{2 \pi j a}{n}+\cos \frac{2 \pi j b}{n}+\cos \frac{2 \pi j c}{n}=0 \tag{1}
\end{equation*}
$$

Circulant graphs with valency 6

Problem (H. S. M. Coxeter, 1944)
Determine all rational solutions of the equation

$$
\cos \left(r_{1} \pi\right)+\cos \left(r_{2} \pi\right)+\cos \left(r_{3} \pi\right)=0, \quad 0 \leq r_{1} \leq r_{2} \leq r_{3} \leq 1
$$

Circulant graphs with valency 6

Solution (W. J. R. Crosby, 1946)

$$
\begin{gather*}
0 \leq r_{1} \leq \frac{1}{2}, \quad r_{2}=\frac{1}{2}, \quad r_{3}=1-r_{1}, \tag{2}\\
0 \leq r_{1} \leq \frac{1}{3}, \quad r_{2}=\frac{2}{3}-r_{1}, \quad r_{3}=\frac{2}{3}+r_{1} . \tag{3}\\
r_{1}=\frac{1}{5}, \quad r_{2}=\frac{3}{5}, \quad r_{3}=\frac{2}{3} \quad \text { and } \quad r_{1}=\frac{1}{3}, \quad r_{2}=\frac{2}{5}, r_{3}=\frac{4}{5} . \tag{4}
\end{gather*}
$$

Circulant graphs with valency 6

For a given integer $n \geq 7$ and a subset $S=\{ \pm a, \pm b, \pm c\} \subset \mathbb{Z}_{n}$ of size 6 , suppose that for $j \in\{0,1,2, \ldots, n-1\}$ we have $\chi_{j}(S)=0$. Then we say that j (as well as the corresponding character χ_{j}) is of type 1 , type 2 or type 3 , respectively, if the corresponding solution of Equation (1) is of type (2), (3) or (4), respectively.

Circulant Graphs with valency 6

With P. Šparl we were able to classify distance magic circulants $\operatorname{Circ}(n ; S)$ with $S=\{ \pm a, \pm b, \pm c\} \subset \mathbb{Z}_{n}$, for which all $j \in\{0,1,2, \ldots, n-1\}$ with $\chi_{j}(S)=0$ are of the same type.

Circulant Graphs with valency 6

Theorem (M. \& Šparl, 2021)
Let $n \geq 7$ be an integer and let $S=\{ \pm a, \pm b, \pm c\} \subset \mathbb{Z}_{n}$ be such that $|S|=6$ and $\langle S\rangle=\mathbb{Z}_{n}$. Suppose that all
$j \in\{0,1,2, \ldots, n-1\}$ with $\chi_{j}(S)=0$ are of type 2 . Then
$\Gamma=\operatorname{Circ}(n ; S)$ is distance magic if and only if $n=3 n_{0}$ for some $n_{0} \geq 3$, and either $\Gamma \cong C_{n_{0}}\left[3 K_{1}\right]$, or the following both hold:

Circulant Graphs with valency 6

Theorem (M. \& Šparl, 2021)

- $n_{0}=d d^{\prime}$ for coprime d and d^{\prime} with $1<d<d^{\prime}$ both of which are coprime to 3 ;
- letting $\delta \in\{-1,1\}$ be such that $n_{0} \equiv \delta(\bmod 3)$ and letting $c^{\prime} \in\{1,2, \ldots, n-1\}$ be the unique solution of the system of congruences

$$
\begin{array}{ll}
c^{\prime} \equiv 0 & (\bmod 3) \\
c^{\prime} \equiv 1 & (\bmod d) \tag{5}\\
c^{\prime} \equiv-1 & \left(\bmod d^{\prime}\right)
\end{array}
$$

there exists a $q \in \mathbb{Z}_{n}^{*}$ such that $q S=\left\{ \pm 1, \pm\left(n_{0}+\delta\right), \pm c^{\prime}\right\}$.

Closed distance magic circulant graphs

Closed Distance Magic Graphs

Closed Distance Magic Graphs

Graph Γ is said to be closed distance magic, if there exist a bijective labeling $\ell: V \mapsto\{1,2, \ldots, n\}$ of Γ and a constant r, such that $\bar{w}(x)=r$ for every $x \in V$.

Closed Distance Magic Graphs

Closed Distance Magic Graphs

Graph Γ is said to be closed distance magic, if there exist a bijective labeling $\ell: V \mapsto\{1,2, \ldots, n\}$ of Γ and a constant r, such that $\bar{w}(x)=r$ for every $x \in V$.

Similarly as in distance magic case we see, that if Γ is a regular (with valency k) closed distance magic graph, then

$$
r=\frac{(k+1)(n+1)}{2}
$$

Regular Closed Distance Magic Graphs

Theorem

Assume Γ is a regular graph. Then Γ is closed distance magic if and only if -1 is an eigenvalue of Γ and there exists an eigenvector \mathbf{w} for the eigenvalue 0 with the property that a certain permutation of its entries results in the arithmetic sequence

$$
\frac{1-n}{2}, \frac{3-n}{2}, \frac{5-n}{2}, \ldots, \frac{n-1}{2}
$$

Regular Closed Distance Magic Graphs

Theorem

Assume Γ is a regular graph. Then Γ is closed distance magic if and only if -1 is an eigenvalue of Γ and there exists an eigenvector \mathbf{w} for the eigenvalue 0 with the property that a certain permutation of its entries results in the arithmetic sequence

$$
\frac{1-n}{2}, \frac{3-n}{2}, \frac{5-n}{2}, \ldots, \frac{n-1}{2}
$$

Observe: such an eigenvector \mathbf{w} exists if and only if there exists en eigenvector \mathbf{w}_{1} for the eigenvalue -1 with the property that a certain permutation of its entries results in the arithmetic sequence $1-n, 3-n, 5-n, \ldots, n-1$.

Closed Distance Magic Circulants - some known results

Theorem (Simanjuntak et al.)
For a positive integer k, the circulant graph
$\operatorname{Circ}(n ;\{1,2, \ldots, k-1, k+1, \ldots,\lfloor n / 2\rfloor\})$ is closed distance magic if and only if $n=4 k$.

Closed Distance Magic Circulants - some known results

Theorem (Simanjuntak et al.)
For a positive integer k, the circulant graph
$\operatorname{Circ}(n ;\{1,2, \ldots, k-1, k+1, \ldots,\lfloor n / 2\rfloor\})$ is closed distance magic if and only if $n=4 k$.

Theorem (Simanjuntak et al.)
For $n \geq 2 k+2$, the circulant graph $\operatorname{Circ}(n ;\{1,2, \ldots, k\})$ is not closed distance magic.

Closed Distance Magic Circulants - some known results

Theorem (Anholzer, Cichacz, Peterin)
For a positive integers k, c, the circulant graph $\operatorname{Circ}(n ;\{c, 2 c, \ldots, k c\})$ is closed distance magic if and only if either $n=2 k c$, or $n=(2 k+1) c$ and c is odd.

Closed Distance Magic Circulants - valency 3 or 4

It is easy to see (but it also follows from the above Theorem by Simanjuntak et al.) that the cycle C_{n} is closed distance magic if and only if $n=3$.

Closed Distance Magic Circulants - valency 3 or 4

It is easy to see (but it also follows from the above Theorem by Simanjuntak et al.) that the cycle C_{n} is closed distance magic if and only if $n=3$.

Theorem (Fernández, M., Maleki, Sarobidy)
Let Γ be a connected circulant graph with valency 3 or 4. Then 「 is closed distance magic if and only if Γ is isomorphic to K_{4} or K_{5}.

sketch of the proof - valency 4

- Let $\Gamma=\operatorname{Circ}(n ;\{ \pm a, \pm b\})$ for $1 \leq a<b<n / 2$.

sketch of the proof - valency 4

- Let $\Gamma=\operatorname{Circ}(n ;\{ \pm a, \pm b\})$ for $1 \leq a<b<n / 2$.
- as $k=4$, n must be odd.

sketch of the proof - valency 4

- Let $\Gamma=\operatorname{Circ}(n ;\{ \pm a, \pm b\})$ for $1 \leq a<b<n / 2$.
- as $k=4$, n must be odd.
- We have that -1 is an eigenvalue of Γ if and only if for some $0 \leq j \leq n-1$ we have that

$$
\chi_{j}(\{ \pm a, \pm b\})=2 \cos \left(\frac{2 \pi j a}{n}\right)+2 \cos \left(\frac{2 \pi j b}{n}\right)=-1
$$

sketch of the proof - valency 4

- Let $\Gamma=\operatorname{Circ}(n ;\{ \pm a, \pm b\})$ for $1 \leq a<b<n / 2$.
- as $k=4$, n must be odd.
- We have that -1 is an eigenvalue of Γ if and only if for some $0 \leq j \leq n-1$ we have that

$$
\chi_{j}(\{ \pm a, \pm b\})=2 \cos \left(\frac{2 \pi j a}{n}\right)+2 \cos \left(\frac{2 \pi j b}{n}\right)=-1
$$

- which is equivalent to

$$
\cos \left(\frac{2 \pi j a}{n}\right)+\cos \left(\frac{2 \pi j b}{n}\right)+\cos \frac{\pi}{3}=0
$$

sketch of the proof - valency 4

Therefore, by the above solution of Crosby, one of the following holds for some integers k_{1}, k_{2} :
1.

$$
\left\{\frac{2 \pi j a}{n}, \frac{2 \pi j b}{n}\right\}=\left\{\frac{\pi}{2}+k_{1} \pi, \pm \frac{2 \pi}{3}+2 k_{2} \pi\right\}
$$

sketch of the proof - valency 4

Therefore, by the above solution of Crosby, one of the following holds for some integers k_{1}, k_{2} :
1.

$$
\left\{\frac{2 \pi j a}{n}, \frac{2 \pi j b}{n}\right\}=\left\{\frac{\pi}{2}+k_{1} \pi, \pm \frac{2 \pi}{3}+2 k_{2} \pi\right\}
$$

2.

$$
\left\{\frac{2 \pi j a}{n}, \frac{2 \pi j b}{n}\right\}=\left\{ \pm \frac{\pi}{3}+2 k_{1} \pi, \pi+2 k_{2} \pi\right\}
$$

sketch of the proof - valency 4

Therefore, by the above solution of Crosby, one of the following holds for some integers k_{1}, k_{2} :
1.

$$
\left\{\frac{2 \pi j a}{n}, \frac{2 \pi j b}{n}\right\}=\left\{\frac{\pi}{2}+k_{1} \pi, \pm \frac{2 \pi}{3}+2 k_{2} \pi\right\}
$$

2.

$$
\left\{\frac{2 \pi j a}{n}, \frac{2 \pi j b}{n}\right\}=\left\{ \pm \frac{\pi}{3}+2 k_{1} \pi, \pi+2 k_{2} \pi\right\}
$$

3.

$$
\left\{\frac{2 \pi j a}{n}, \frac{2 \pi j b}{n}\right\}=\left\{ \pm \frac{2 \pi}{5}+2 k_{1} \pi, \pm \frac{4 \pi}{5}+2 k_{2} \pi\right\}
$$

sketch of the proof - valency 4

- It is easy to see that cases 1 . and 2. above are not possible as n is odd.

sketch of the proof - valency 4

- It is easy to see that cases 1. and 2. above are not possible as n is odd.
- It follows that all eigenvectors (for eigenvalue -1) have the same value at coordinates $0,5 a$ and $5 b$.

sketch of the proof - valency 4

- It is easy to see that cases 1. and 2. above are not possible as n is odd.
- It follows that all eigenvectors (for eigenvalue -1) have the same value at coordinates $0,5 a$ and $5 b$.
- As we are looking for an eigenvector with all entries pairwise different, $5 a$ and $5 b$ must be multiples of n.

sketch of the proof - valency 4

- It is easy to see that cases 1. and 2. above are not possible as n is odd.
- It follows that all eigenvectors (for eigenvalue -1) have the same value at coordinates $0,5 a$ and $5 b$.
- As we are looking for an eigenvector with all entries pairwise different, $5 a$ and $5 b$ must be multiples of n.
- As $a<b<n / 2$ we have $a=n / 5$ and $b=2 n / 5$.

sketch of the proof - valency 4

- It is easy to see that cases 1. and 2. above are not possible as n is odd.
- It follows that all eigenvectors (for eigenvalue -1) have the same value at coordinates $0,5 a$ and $5 b$.
- As we are looking for an eigenvector with all entries pairwise different, $5 a$ and $5 b$ must be multiples of n.
- As $a<b<n / 2$ we have $a=n / 5$ and $b=2 n / 5$.
- By connectedness, $n=5, a=1$ and $b=2$.

Closed Distance Magic Circulants - valency 5

Theorem (Fernández, M., Maleki, Sarobidy)

Let Γ be a connected circulant graph with valency 5 . Then Γ is closed distance magic if and only if Γ is isomorphic to $\operatorname{Circ}\left(\mathbb{Z}_{n} ;\{ \pm 1, \pm c, n / 2\}\right)$ with n even and $1<c<n / 2$, and one of the following (i)-(iv) holds:
(i) $c=n / 2-1$;
(ii) $n \equiv 2(\bmod 4), c$ even, and $2\left(c^{2}-1\right)$ is an odd multiple of n;
(iii) $n=3 \cdot 2^{t}\left(6 k+(-1)^{t}\right)$ and $c=2^{t-1}\left(6 k+(-1)^{t}\right)-1$ for some integer $t \geq 2$ and some integer $k \geq 0$ such that $c \geq 2$;
(iv) $n=3 \cdot 2^{t}\left(6 k-(-1)^{t}\right)$ and $c=2^{t-1}\left(6 k-(-1)^{t}\right)+1$ for some integer $t \geq 2$ and some integer $k \geq 0$ such that $c \geq 2$.

Thank you!

