
(Closed) distance magic circulants
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Notation, definitions and examples



Graphs and labelings

Graph

• Γ - finite, simple graph (no loops, no multiple edges)

• V - vertex set of Γ

• n = |V |
• for x ∈ V we denote by Γ(x) the set of neighbours of x

• for x ∈ V we let Γ[x ] = {x} ∪ Γ(x)

Labeling

A labeling of Γ is a map ` : V 7→ R.
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Graphs and labelings

Weight of a vertex

Let ` be a labeling of Γ. For x ∈ V we define

w(x) = w`(x) =
∑

y∈Γ(x)

`(y).

and

w(x) = w `(x) =
∑

y∈Γ[x]

`(y).

We refer to w(x) and w(x) as weight and closed weight of vertex

x , respectively.
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Distance Magic Graphs

Distance Magic Graphs

Graph Γ is said to be distance magic, if there exist a bijective

labeling ` : V 7→ {1, 2, . . . , n} of Γ and a constant r , such that

w(x) = r for every x ∈ V .

In this case:

• ` - distance magic labeling of Γ

• r - magic constant of Γ
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Distance Magic Graphs - examples

1 2

43

More general, hypercubes QD with D ≡ 2 (mod 4) are

distance-magic.
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Distance Magic Graphs - examples
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Distance Magic Graphs - nonexamples

• Complete graphs Kn for n ≥ 2

• Cycles Cn for n ≥ 5

• Hypercubes QD with D 6≡ 2 (mod 4)

• ...
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Motivation and related concepts



Distance Magic Graphs - couple of comments

• Application - tournaments

• Related concepts (closed distance magic graphs, d-distance

magic graphs, anti distance magic graphs, group distance

magic graphs, ...)
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Regular distance magic graphs



Regular Distance Magic Graphs

Assume now that Γ is a regular distance magic graph (with valency

k , distance magic labeling ` and magic constant r).

∑
x∈V

`(x) = 1 + 2 + · · ·+ n =
n(n + 1)

2

∑
x∈V

`(x) =
1

k

∑
x∈V

∑
y∈Γ(x)

`(y) =
nr

k
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Regular Distance Magic Graphs

Therefore

r =
k(n + 1)

2

In particular, k is even.
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Regular Distance Magic Graphs

Assume Γ is a regular distance magic graph (with evan valency k ,

distance magic labeling ` and magic constant r).

For a, b ∈ R, a 6= 0, and x ∈ V define

`′(x) = a`(x) + b

Then

w ′(x) =
∑

y∈Γ(x)

`′(y) =
∑

y∈Γ(x)

(
a`(y) + b

)
= ar + bk.
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Regular Distance Magic Graphs

In particular, if a = 1 and b = −r/k = −(n + 1)/2, then

w ′(x) = 0 for every x ∈ V .

Theorem

Assume Γ is a regular distance magic graph (with evan valency k ,

distance magic labeling ` and magic constant r). Let

V = {x1, x2, . . . , xn}. For x ∈ V we let `′(x) = `(x)− (n + 1)/2.

Then vector

(`′(x1), `′(x2), . . . , `′(xn))T

is an eigenvector of Γ with eigenvalue 0.

In particular, if 0 is not an eigenvalue of Γ, then Γ is not distance

magic.
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Regular Distance Magic Graphs

Theorem

Assume Γ is a regular graph (with evan valency k). Then Γ is

distance magic if and only if 0 is an eigenvalue of Γ and there

exists an eigenvector w for the eigenvalue 0 with the property

that a certain permutation of its entries results in the arithmetic

sequence
1− n

2
,

3− n

2
,

5− n

2
, . . . ,

n − 1

2
.

Observe: such an eigenvector w exists if and only if there exists en

eigenvector w1 for the eigenvalue 0 with the property that a

certain permutation of its entries results in the arithmetic sequence

1− n, 3− n, 5− n, . . . , n − 1.
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Circulant graphs



Circulant Graphs

Circulant graphs

Let Zn denote the cyclic group of order n and let S ⊆ Zn be such

that 0 6∈ S and S = −S . Let Circ(Zn; S) be a graph with vertex

set Zn, where x , y ∈ Zn are adjacent if and only if x − y ∈ S .

Observe that Circ(Zn;S) is regular with valency |S | and is

connected if and only if S generates Zn.
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Tetravalent Circulant Graphs

Theorem (Cichacz and Froncek, 2016)

Let S = {±1,±b} ⊆ Zn, b 6= n/2 odd. Then Circ(Zn; S) is

distance magic if and only if b2 − 1 = n(2t + 1) for some

nonnegative integer t, or n = 2b + 2.

Open problem (Cichacz and Froncek, 2016)

Characterize distance magic circulant graphs Circ(Zn;S), where

S = {±1,±b} ⊆ Zn with b 6= n/2 even.
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Characters of cyclic groups

Characters of cyclic groups

Let Zn denote the cyclic group of order n. A character of Zn is a

homomorphism from Zn to the multiplicative group C \ {0}.

Theorem

Let i denote the imaginary unit of C. The characters of Zn are

precisely the homomorphisms

χj : Zn → C \ {0} (0 ≤ j ≤ n − 1),

where for each x ∈ Zn we have

χj(x) =
(
e

2πi
n

)jx
= cos

(
2πjx

n

)
+ i sin

(
2πjx

n

)
.
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Eigenvalues of circulant graphs

Theorem

The spectrum of Circ(Zn;S) is equal to

{χj(S) | 0 ≤ j ≤ n − 1},

where

χj(S) =
∑
s∈S

χj(s).

Moreover,

(χj(0), χj(1), . . . , χj(n − 1))T

is the eigenvector corresponding to the eigenvalue χj(S).
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Distance magic circulant graphs

with valency 4 and 6



Circulant graphs with valency 4

Let Γ = Circ(Zn; {±a,±b}), where 1 ≤ a < b < n/2 and

gcd(n, a, b) = 1, be a connected tetravalent circulant. Pick

0 ≤ j ≤ n − 1. Then χj(S) = 0 if and only if

cos
2πja

n
+ cos

2πjb

n
= 0

if and only if

j =
n(2k + 1)

2(b + a)
∈ {0, 1, . . . , n − 1} for some 0 ≤ k ≤ b + a− 1, or

j =
n(2k + 1)

2(b − a)
∈ {0, 1, . . . , n − 1} for some 0 ≤ k ≤ b − a− 1.
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Circulant graphs with valency 4

Theorem (M. & Šparl, 2021)

Let Γ = Circ(Zn; {±a,±b}), where 1 ≤ a < b < n/2 and

gcd(n, a, b) = 1, be a connected tetravalent circulant. Then Γ is

distance magic if and only if n is even, at least one of a and b is

coprime to n, and Γ is isomorphic to Circ(Zn; {±1,±c}) for

some 1 < c < n/2 such that the following holds:

• if c is even then 2(c2 − 1) is an odd multiple of n;

• if c is odd then either c2 − 1 is an odd multiple of n or

n = 2c + 2 ≡ 4 (mod 8).
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Circulant graphs with valency 6

Let Γ = Circ(Zn; {±a,±b,±c}), where 1 ≤ a < b < c < n/2

and gcd(n, a, b, c) = 1, be a connected circulant with valency 6.

Pick 0 ≤ j ≤ n − 1. Then χj(S) = 0 if and only if

cos
2πja

n
+ cos

2πjb

n
+ cos

2πjc

n
= 0. (1)

21



Circulant graphs with valency 6

Problem (H. S. M. Coxeter, 1944)

Determine all rational solutions of the equation

cos(r1π) + cos(r2π) + cos(r3π) = 0, 0 ≤ r1 ≤ r2 ≤ r3 ≤ 1.
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Circulant graphs with valency 6

Solution (W. J. R. Crosby, 1946)

0 ≤ r1 ≤
1

2
, r2 =

1

2
, r3 = 1− r1, (2)

0 ≤ r1 ≤
1

3
, r2 =

2

3
− r1, r3 =

2

3
+ r1. (3)

r1 =
1

5
, r2 =

3

5
, r3 =

2

3
and r1 =

1

3
, r2 =

2

5
, r3 =

4

5
. (4)
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Circulant graphs with valency 6

For a given integer n ≥ 7 and a subset S = {±a,±b,±c} ⊂ Zn

of size 6, suppose that for j ∈ {0, 1, 2, . . . , n − 1} we have

χj(S) = 0. Then we say that j (as well as the corresponding

character χj) is of type 1, type 2 or type 3, respectively, if the

corresponding solution of Equation (1) is of type (2), (3) or (4),

respectively.
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Circulant Graphs with valency 6

With P. Šparl we were able to classify distance magic circulants

Circ(n;S) with S = {±a,±b,±c} ⊂ Zn, for which all

j ∈ {0, 1, 2, . . . , n − 1} with χj(S) = 0 are of the same type.
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Circulant Graphs with valency 6

Theorem (M. & Šparl, 2021)

Let n ≥ 7 be an integer and let S = {±a,±b,±c} ⊂ Zn be such

that |S | = 6 and 〈S〉 = Zn. Suppose that all

j ∈ {0, 1, 2, . . . , n − 1} with χj(S) = 0 are of type 2. Then

Γ = Circ(n; S) is distance magic if and only if n = 3n0 for some

n0 ≥ 3, and either Γ ∼= Cn0 [3K1], or the following both hold:
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Circulant Graphs with valency 6

Theorem (M. & Šparl, 2021)

• n0 = dd ′ for coprime d and d ′ with 1 < d < d ′ both of which

are coprime to 3;

• letting δ ∈ {−1, 1} be such that n0 ≡ δ (mod 3) and letting

c ′ ∈ {1, 2, . . . , n − 1} be the unique solution of the system of

congruences

c ′≡ 0 (mod 3)

c ′≡ 1 (mod d)

c ′≡−1 (mod d ′),

(5)

there exists a q ∈ Z∗n such that qS = {±1,±(n0 + δ),±c ′}.
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Closed distance magic circulant

graphs



Closed Distance Magic Graphs

Closed Distance Magic Graphs

Graph Γ is said to be closed distance magic, if there exist a

bijective labeling ` : V 7→ {1, 2, . . . , n} of Γ and a constant r ,

such that w(x) = r for every x ∈ V .

Similarly as in distance magic case we see, that if Γ is a regular

(with valency k) closed distance magic graph, then

r =
(k + 1)(n + 1)

2
.
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Regular Closed Distance Magic Graphs

Theorem

Assume Γ is a regular graph. Then Γ is closed distance magic if

and only if −1 is an eigenvalue of Γ and there exists an

eigenvector w for the eigenvalue 0 with the property that a

certain permutation of its entries results in the arithmetic

sequence
1− n

2
,

3− n

2
,

5− n

2
, . . . ,

n − 1

2
.

Observe: such an eigenvector w exists if and only if there exists en

eigenvector w1 for the eigenvalue −1 with the property that a

certain permutation of its entries results in the arithmetic sequence

1− n, 3− n, 5− n, . . . , n − 1.
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Closed Distance Magic Circulants - some known results

Theorem (Simanjuntak et al. )

For a positive integer k , the circulant graph

Circ(n; {1, 2, . . . , k − 1, k + 1, . . . , bn/2c}) is closed distance

magic if and only if n = 4k .

Theorem (Simanjuntak et al. )

For n ≥ 2k + 2, the circulant graph Circ(n; {1, 2, . . . , k}) is not

closed distance magic.
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Closed Distance Magic Circulants - some known results

Theorem (Anholzer, Cichacz, Peterin)

For a positive integers k , c , the circulant graph

Circ(n; {c , 2c , . . . , kc}) is closed distance magic if and only if

either n = 2kc , or n = (2k + 1)c and c is odd.
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Closed Distance Magic Circulants - valency 3 or 4

It is easy to see (but it also follows from the above Theorem by

Simanjuntak et al.) that the cycle Cn is closed distance magic if

and only if n = 3.

Theorem ( Fernández, M., Maleki, Sarobidy)

Let Γ be a connected circulant graph with valency 3 or 4. Then Γ

is closed distance magic if and only if Γ is isomorphic to K4 or K5.
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sketch of the proof - valency 4

• Let Γ = Circ(n; {±a,±b}) for 1 ≤ a < b < n/2.

• as k = 4, n must be odd.

• We have that −1 is an eigenvalue of Γ if and only if for some

0 ≤ j ≤ n − 1 we have that

χj({±a,±b}) = 2 cos
(2πja

n

)
+ 2 cos

(2πjb

n

)
= −1,

• which is equivalent to

cos
(2πja

n

)
+ cos

(2πjb

n

)
+ cos

π

3
= 0.
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• We have that −1 is an eigenvalue of Γ if and only if for some

0 ≤ j ≤ n − 1 we have that
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sketch of the proof - valency 4

Therefore, by the above solution of Crosby, one of the following

holds for some integers k1, k2:

1. {2πja

n
,

2πjb

n

}
=
{π

2
+ k1π,±

2π

3
+ 2k2π

}
,

2. {2πja

n
,

2πjb

n

}
=
{
± π

3
+ 2k1π, π + 2k2π

}
,

3. {2πja

n
,

2πjb

n

}
=
{
± 2π

5
+ 2k1π,±

4π

5
+ 2k2π

}
.
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sketch of the proof - valency 4

• It is easy to see that cases 1. and 2. above are not possible as

n is odd.

• It follows that all eigenvectors (for eigenvalue −1) have the

same value at coordinates 0, 5a and 5b.

• As we are looking for an eigenvector with all entries pairwise

different, 5a and 5b must be multiples of n.

• As a < b < n/2 we have a = n/5 and b = 2n/5.

• By connectedness, n = 5, a = 1 and b = 2.
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Closed Distance Magic Circulants - valency 5

Theorem ( Fernández, M., Maleki, Sarobidy)

Let Γ be a connected circulant graph with valency 5. Then Γ is

closed distance magic if and only if Γ is isomorphic to

Circ(Zn; {±1,±c, n/2}) with n even and 1 < c < n/2, and one

of the following (i)–(iv) holds:

(i) c = n/2− 1;

(ii) n ≡ 2 (mod 4), c even, and 2(c2 − 1) is an odd multiple of n;

(iii) n = 3 · 2t(6k + (−1)t) and c = 2t−1(6k + (−1)t)− 1 for

some integer t ≥ 2 and some integer k ≥ 0 such that c ≥ 2;

(iv) n = 3 · 2t(6k − (−1)t) and c = 2t−1(6k − (−1)t) + 1 for

some integer t ≥ 2 and some integer k ≥ 0 such that c ≥ 2.
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Thank you!
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