(Closed) distance magic circulants

Štefko Miklavič University of Primorska, Slovenia Joint work with P. Šparl, B. Fernández, R. Maleki and R. Sarobidy

Outline

Notation, definitions and examples

Motivation and related concepts

Regular distance magic graphs

Circulant graphs

Distance magic circulant graphs with valency 4 and 6

Closed distance magic circulant graphs

Notation, definitions and examples

Graph

- Γ finite, simple graph (no loops, no multiple edges)
- V vertex set of Γ
- n = |V|
- for $x \in V$ we denote by $\Gamma(x)$ the set of neighbours of x
- for $x \in V$ we let $\Gamma[x] = \{x\} \cup \Gamma(x)$

Graph

- Γ finite, simple graph (no loops, no multiple edges)
- V vertex set of Γ
- n = |V|
- for $x \in V$ we denote by $\Gamma(x)$ the set of neighbours of x
- for $x \in V$ we let $\Gamma[x] = \{x\} \cup \Gamma(x)$

Labeling

A labeling of Γ is a map $\ell : V \mapsto \mathbb{R}$.

Weight of a vertex

Let ℓ be a labeling of Γ . For $x \in V$ we define

$$w(x) = w_{\ell}(x) = \sum_{y \in \Gamma(x)} \ell(y).$$

and

$$\overline{w}(x) = \overline{w}_{\ell}(x) = \sum_{y \in \Gamma[x]} \ell(y).$$

Weight of a vertex

Let ℓ be a labeling of Γ . For $x \in V$ we define

$$w(x) = w_{\ell}(x) = \sum_{y \in \Gamma(x)} \ell(y).$$

and

$$\overline{w}(x) = \overline{w}_{\ell}(x) = \sum_{y \in \Gamma[x]} \ell(y).$$

We refer to w(x) and $\overline{w}(x)$ as weight and closed weight of vertex x, respectively.

Distance Magic Graphs

Graph Γ is said to be distance magic, if there exist a bijective labeling $\ell : V \mapsto \{1, 2, ..., n\}$ of Γ and a constant r, such that w(x) = r for every $x \in V$.

Distance Magic Graphs

Graph Γ is said to be distance magic, if there exist a bijective labeling $\ell : V \mapsto \{1, 2, ..., n\}$ of Γ and a constant r, such that w(x) = r for every $x \in V$.

In this case:

- ℓ distance magic labeling of Γ
- r magic constant of Γ

Distance Magic Graphs - examples

Distance Magic Graphs - examples

More general, hypercubes Q_D with $D \equiv 2 \pmod{4}$ are distance-magic.

Distance Magic Graphs - examples

Distance Magic Graphs - nonexamples

- Complete graphs K_n for $n \ge 2$
- Cycles C_n for $n \ge 5$
- Hypercubes Q_D with $D \not\equiv 2 \pmod{4}$
- ...

Motivation and related concepts

Distance Magic Graphs - couple of comments

• Application - tournaments

- Application tournaments
- Related concepts (closed distance magic graphs, d-distance magic graphs, anti distance magic graphs, group distance magic graphs, ...)

Regular distance magic graphs

$$\sum_{x \in V} \ell(x) = 1 + 2 + \dots + n = \frac{n(n+1)}{2}$$

$$\sum_{x \in V} \ell(x) = 1 + 2 + \dots + n = \frac{n(n+1)}{2}$$

$$\sum_{x \in V} \ell(x) = \frac{1}{k} \sum_{x \in V} \sum_{y \in \Gamma(x)} \ell(y)$$

$$\sum_{x\in V}\ell(x)=1+2+\cdots+n=\frac{n(n+1)}{2}$$

$$\sum_{x \in V} \ell(x) = \frac{1}{k} \sum_{x \in V} \sum_{y \in \Gamma(x)} \ell(y) = \frac{nr}{k}$$

Therefore

$$r=\frac{k(n+1)}{2}$$

Therefore

$$r=\frac{k(n+1)}{2}$$

In particular, k is even.

For
$$a, b \in \mathbb{R}$$
, $a \neq 0$, and $x \in V$ define $\ell'(x) = a\ell(x) + b$

Assume Γ is a regular distance magic graph (with evan valency k, distance magic labeling ℓ and magic constant r).

For
$$a, b \in \mathbb{R}$$
, $a \neq 0$, and $x \in V$ define $\ell'(x) = a\ell(x) + b$

Then

$$w'(x) = \sum_{y \in \Gamma(x)} \ell'(y)$$

Assume Γ is a regular distance magic graph (with evan valency k, distance magic labeling ℓ and magic constant r).

For
$$a, b \in \mathbb{R}$$
, $a \neq 0$, and $x \in V$ define $\ell'(x) = a\ell(x) + b$

Then

$$w'(x) = \sum_{y \in \Gamma(x)} \ell'(y) = \sum_{y \in \Gamma(x)} (a\ell(y) + b)$$

Assume Γ is a regular distance magic graph (with evan valency k, distance magic labeling ℓ and magic constant r).

For
$$a, b \in \mathbb{R}$$
, $a \neq 0$, and $x \in V$ define $\ell'(x) = a\ell(x) + b$

Then

$$w'(x) = \sum_{y \in \Gamma(x)} \ell'(y) = \sum_{y \in \Gamma(x)} \left(a\ell(y) + b\right) = ar + bk.$$

In particular, if a = 1 and b = -r/k = -(n+1)/2, then w'(x) = 0 for every $x \in V$.

In particular, if a = 1 and b = -r/k = -(n+1)/2, then w'(x) = 0 for every $x \in V$.

Theorem

Assume Γ is a regular distance magic graph (with evan valency k, distance magic labeling ℓ and magic constant r). Let $V = \{x_1, x_2, \ldots, x_n\}$. For $x \in V$ we let $\ell'(x) = \ell(x) - (n+1)/2$. Then vector

$$(\ell'(x_1), \ell'(x_2), \ldots, \ell'(x_n))^T$$

is an eigenvector of Γ with eigenvalue 0.

In particular, if a = 1 and b = -r/k = -(n+1)/2, then w'(x) = 0 for every $x \in V$.

Theorem

Assume Γ is a regular distance magic graph (with evan valency k, distance magic labeling ℓ and magic constant r). Let $V = \{x_1, x_2, \ldots, x_n\}$. For $x \in V$ we let $\ell'(x) = \ell(x) - (n+1)/2$. Then vector

$$(\ell'(x_1), \ell'(x_2), \ldots, \ell'(x_n))^T$$

is an eigenvector of Γ with eigenvalue 0.

In particular, if 0 is not an eigenvalue of Γ , then Γ is not distance magic.

Theorem

Assume Γ is a regular graph (with evan valency k). Then Γ is distance magic if and only if 0 is an eigenvalue of Γ and there exists an eigenvector **w** for the eigenvalue 0 with the property that a certain permutation of its entries results in the arithmetic sequence

$$\frac{1-n}{2}, \frac{3-n}{2}, \frac{5-n}{2}, \dots, \frac{n-1}{2}.$$

Theorem

Assume Γ is a regular graph (with evan valency k). Then Γ is distance magic if and only if 0 is an eigenvalue of Γ and there exists an eigenvector **w** for the eigenvalue 0 with the property that a certain permutation of its entries results in the arithmetic sequence

$$\frac{1-n}{2}, \frac{3-n}{2}, \frac{5-n}{2}, \dots, \frac{n-1}{2}$$

Observe: such an eigenvector **w** exists if and only if there exists en eigenvector **w**₁ for the eigenvalue 0 with the property that a certain permutation of its entries results in the arithmetic sequence $1 - n, 3 - n, 5 - n, \dots, n - 1$.

Circulant graphs

Circulant graphs

Let \mathbb{Z}_n denote the cyclic group of order n and let $S \subseteq \mathbb{Z}_n$ be such that $0 \notin S$ and S = -S. Let $Circ(\mathbb{Z}_n; S)$ be a graph with vertex set \mathbb{Z}_n , where $x, y \in \mathbb{Z}_n$ are adjacent if and only if $x - y \in S$.

Circulant graphs

Let \mathbb{Z}_n denote the cyclic group of order n and let $S \subseteq \mathbb{Z}_n$ be such that $0 \notin S$ and S = -S. Let $Circ(\mathbb{Z}_n; S)$ be a graph with vertex set \mathbb{Z}_n , where $x, y \in \mathbb{Z}_n$ are adjacent if and only if $x - y \in S$.

Observe that $\operatorname{Circ}(\mathbb{Z}_n; S)$ is regular with valency |S| and is connected if and only if S generates \mathbb{Z}_n .
Theorem (Cichacz and Froncek, 2016) Let $S = \{\pm 1, \pm b\} \subseteq \mathbb{Z}_n$, $b \neq n/2$ odd. Then $\operatorname{Circ}(\mathbb{Z}_n; S)$ is distance magic if and only if $b^2 - 1 = n(2t + 1)$ for some

nonnegative integer t, or n = 2b + 2.

Theorem (Cichacz and Froncek, 2016) Let $S = \{\pm 1, \pm b\} \subseteq \mathbb{Z}_n$, $b \neq n/2$ odd. Then $\operatorname{Circ}(\mathbb{Z}_n; S)$ is distance magic if and only if $b^2 - 1 = n(2t + 1)$ for some nonnegative integer t, or n = 2b + 2.

Open problem (Cichacz and Froncek, 2016)

Characterize distance magic circulant graphs $\operatorname{Circ}(\mathbb{Z}_n; S)$, where $S = \{\pm 1, \pm b\} \subseteq \mathbb{Z}_n$ with $b \neq n/2$ even.

Characters of cyclic groups

Characters of cyclic groups

Let \mathbb{Z}_n denote the cyclic group of order *n*. A *character* of \mathbb{Z}_n is a homomorphism from \mathbb{Z}_n to the multiplicative group $\mathbb{C} \setminus \{0\}$.

Characters of cyclic groups

Characters of cyclic groups

Let \mathbb{Z}_n denote the cyclic group of order *n*. A *character* of \mathbb{Z}_n is a homomorphism from \mathbb{Z}_n to the multiplicative group $\mathbb{C} \setminus \{0\}$.

Theorem

Let **i** denote the imaginary unit of \mathbb{C} . The characters of \mathbb{Z}_n are precisely the homomorphisms

$$\chi_j \colon \mathbb{Z}_n \to \mathbb{C} \setminus \{0\} \qquad (0 \leq j \leq n-1),$$

where for each $x \in \mathbb{Z}_n$ we have

$$\chi_j(x) = \left(e^{\frac{2\pi \mathbf{i}}{n}}\right)^{jx} = \cos\left(\frac{2\pi jx}{n}\right) + \mathbf{i}\sin\left(\frac{2\pi jx}{n}\right).$$

Eigenvalues of circulant graphs

Theorem

The spectrum of $\operatorname{Circ}(\mathbb{Z}_n; S)$ is equal to

$$\{\chi_j(S)\mid 0\leq j\leq n-1\},\$$

where

$$\chi_j(S) = \sum_{s \in S} \chi_j(s).$$

Eigenvalues of circulant graphs

Theorem

The spectrum of $\operatorname{Circ}(\mathbb{Z}_n; S)$ is equal to

$$\{\chi_j(S)\mid 0\leq j\leq n-1\},\$$

where

$$\chi_j(S) = \sum_{s \in S} \chi_j(s).$$

Moreover,

$$(\chi_j(0),\chi_j(1),\ldots,\chi_j(n-1))^T$$

is the eigenvector corresponding to the eigenvalue $\chi_i(S)$.

Distance magic circulant graphs with valency 4 and 6

Circulant graphs with valency 4

Let $\Gamma = \operatorname{Circ}(\mathbb{Z}_n; \{\pm a, \pm b\})$, where $1 \le a < b < n/2$ and $\operatorname{gcd}(n, a, b) = 1$, be a connected tetravalent circulant. Pick $0 \le j \le n - 1$. Then $\chi_j(S) = 0$ if and only if

$$\cos\frac{2\pi ja}{n} + \cos\frac{2\pi jb}{n} = 0$$

Circulant graphs with valency 4

Let $\Gamma = \operatorname{Circ}(\mathbb{Z}_n; \{\pm a, \pm b\})$, where $1 \le a < b < n/2$ and $\operatorname{gcd}(n, a, b) = 1$, be a connected tetravalent circulant. Pick $0 \le j \le n-1$. Then $\chi_j(S) = 0$ if and only if

$$\cos\frac{2\pi ja}{n} + \cos\frac{2\pi jb}{n} = 0$$

if and only if

$$j = \frac{n(2k+1)}{2(b+a)} \in \{0, 1, \dots, n-1\} \text{ for some } 0 \le k \le b+a-1, \text{ or}$$
$$j = \frac{n(2k+1)}{2(b-a)} \in \{0, 1, \dots, n-1\} \text{ for some } 0 \le k \le b-a-1.$$

Theorem (M. & Šparl, 2021)

Let $\Gamma = \operatorname{Circ}(\mathbb{Z}_n; \{\pm a, \pm b\})$, where $1 \le a < b < n/2$ and $\operatorname{gcd}(n, a, b) = 1$, be a connected tetravalent circulant. Then Γ is distance magic if and only if *n* is even, at least one of *a* and *b* is coprime to *n*, and Γ is isomorphic to $\operatorname{Circ}(\mathbb{Z}_n; \{\pm 1, \pm c\})$ for some 1 < c < n/2 such that the following holds:

- if c is even then $2(c^2 1)$ is an odd multiple of n;
- if c is odd then either $c^2 1$ is an odd multiple of n or $n = 2c + 2 \equiv 4 \pmod{8}$.

Let $\Gamma = \operatorname{Circ}(\mathbb{Z}_n; \{\pm a, \pm b, \pm c\})$, where $1 \le a < b < c < n/2$ and $\operatorname{gcd}(n, a, b, c) = 1$, be a connected circulant with valency 6. Pick $0 \le j \le n - 1$. Then $\chi_j(S) = 0$ if and only if $\cos \frac{2\pi j a}{n} + \cos \frac{2\pi j b}{n} + \cos \frac{2\pi j c}{n} = 0.$ (1)

Problem (H. S. M. Coxeter, 1944) Determine all rational solutions of the equation

$$\cos(r_1\pi) + \cos(r_2\pi) + \cos(r_3\pi) = 0, \quad 0 \le r_1 \le r_2 \le r_3 \le 1.$$

Solution (W. J. R. Crosby, 1946) $0 \le r_1 \le \frac{1}{2}, \quad r_2 = \frac{1}{2}, \quad r_3 = 1 - r_1, \quad (2)$ $0 \le r_1 \le \frac{1}{3}, \quad r_2 = \frac{2}{3} - r_1, \quad r_3 = \frac{2}{3} + r_1. \quad (3)$ $r_1 = \frac{1}{5}, \ r_2 = \frac{3}{5}, \ r_3 = \frac{2}{3} \quad \text{and} \quad r_1 = \frac{1}{3}, \ r_2 = \frac{2}{5}, \ r_3 = \frac{4}{5}. \quad (4)$ For a given integer $n \ge 7$ and a subset $S = \{\pm a, \pm b, \pm c\} \subset \mathbb{Z}_n$ of size 6, suppose that for $j \in \{0, 1, 2, ..., n-1\}$ we have $\chi_j(S) = 0$. Then we say that j (as well as the corresponding character χ_j) is of *type 1*, *type 2* or *type 3*, respectively, if the corresponding solution of Equation (1) is of type (2), (3) or (4), respectively. With P. Šparl we were able to classify distance magic circulants $\operatorname{Circ}(n; S)$ with $S = \{\pm a, \pm b, \pm c\} \subset \mathbb{Z}_n$, for which all $j \in \{0, 1, 2, \dots, n-1\}$ with $\chi_j(S) = 0$ are of the same type.

Theorem (M. & Šparl, 2021)

Let $n \ge 7$ be an integer and let $S = \{\pm a, \pm b, \pm c\} \subset \mathbb{Z}_n$ be such that |S| = 6 and $\langle S \rangle = \mathbb{Z}_n$. Suppose that all $j \in \{0, 1, 2, ..., n-1\}$ with $\chi_j(S) = 0$ are of type 2. Then $\Gamma = \operatorname{Circ}(n; S)$ is distance magic if and only if $n = 3n_0$ for some $n_0 \ge 3$, and either $\Gamma \cong C_{n_0}[3K_1]$, or the following both hold:

Circulant Graphs with valency 6

Theorem (M. & Šparl, 2021)

- n₀ = dd' for coprime d and d' with 1 < d < d' both of which are coprime to 3;
- letting δ ∈ {-1,1} be such that n₀ ≡ δ (mod 3) and letting c' ∈ {1,2,...,n-1} be the unique solution of the system of congruences

$$c' \equiv 0 \pmod{3}$$

$$c' \equiv 1 \pmod{d} \qquad (5)$$

$$c' \equiv -1 \pmod{d'},$$

there exists a $q \in \mathbb{Z}_n^*$ such that $qS = \{\pm 1, \pm (n_0 + \delta), \pm c'\}.$

Closed distance magic circulant graphs

Closed Distance Magic Graphs

Graph Γ is said to be closed distance magic, if there exist a bijective labeling $\ell : V \mapsto \{1, 2, ..., n\}$ of Γ and a constant r, such that $\overline{w}(x) = r$ for every $x \in V$.

Closed Distance Magic Graphs

Graph Γ is said to be closed distance magic, if there exist a bijective labeling $\ell : V \mapsto \{1, 2, ..., n\}$ of Γ and a constant r, such that $\overline{w}(x) = r$ for every $x \in V$.

Similarly as in distance magic case we see, that if Γ is a regular (with valency k) closed distance magic graph, then

$$r=\frac{(k+1)(n+1)}{2}.$$

Regular Closed Distance Magic Graphs

Theorem

Assume Γ is a regular graph. Then Γ is closed distance magic if and only if -1 is an eigenvalue of Γ and there exists an eigenvector **w** for the eigenvalue 0 with the property that a certain permutation of its entries results in the arithmetic sequence

$$\frac{1-n}{2}, \frac{3-n}{2}, \frac{5-n}{2}, \dots, \frac{n-1}{2}.$$

Regular Closed Distance Magic Graphs

Theorem

Assume Γ is a regular graph. Then Γ is closed distance magic if and only if -1 is an eigenvalue of Γ and there exists an eigenvector **w** for the eigenvalue 0 with the property that a certain permutation of its entries results in the arithmetic sequence

$$\frac{1-n}{2}, \frac{3-n}{2}, \frac{5-n}{2}, \dots, \frac{n-1}{2}$$

Observe: such an eigenvector **w** exists if and only if there exists en eigenvector **w**₁ for the eigenvalue -1 with the property that a certain permutation of its entries results in the arithmetic sequence $1 - n, 3 - n, 5 - n, \dots, n - 1$.

Theorem (Simanjuntak et al.)

For a positive integer k, the circulant graph $\operatorname{Circ}(n; \{1, 2, \dots, k - 1, k + 1, \dots, \lfloor n/2 \rfloor\})$ is closed distance magic if and only if n = 4k.

Theorem (Simanjuntak et al.)

For a positive integer k, the circulant graph $\operatorname{Circ}(n; \{1, 2, \dots, k - 1, k + 1, \dots, \lfloor n/2 \rfloor\})$ is closed distance magic if and only if n = 4k.

Theorem (Simanjuntak et al.)

For $n \ge 2k + 2$, the circulant graph $Circ(n; \{1, 2, ..., k\})$ is not closed distance magic.

Theorem (Anholzer, Cichacz, Peterin)

For a positive integers k, c, the circulant graph Circ(n; {c, 2c, ..., kc}) is closed distance magic if and only if either n = 2kc, or n = (2k + 1)c and c is odd. It is easy to see (but it also follows from the above Theorem by Simanjuntak et al.) that the cycle C_n is closed distance magic if and only if n = 3.

It is easy to see (but it also follows from the above Theorem by Simanjuntak et al.) that the cycle C_n is closed distance magic if and only if n = 3.

Theorem (Fernández, M., Maleki, Sarobidy)

Let Γ be a connected circulant graph with valency 3 or 4. Then Γ is closed distance magic if and only if Γ is isomorphic to K_4 or K_5 .

• Let $\Gamma = Circ(n; \{\pm a, \pm b\})$ for $1 \le a < b < n/2$.

- Let $\Gamma = \operatorname{Circ}(n; \{\pm a, \pm b\})$ for $1 \le a < b < n/2$.
- as k = 4, *n* must be odd.

- Let $\Gamma = Circ(n; \{\pm a, \pm b\})$ for $1 \le a < b < n/2$.
- as k = 4, n must be odd.
- We have that -1 is an eigenvalue of Γ if and only if for some $0 \le j \le n-1$ we have that

$$\chi_j(\{\pm a, \pm b\}) = 2\cos\left(\frac{2\pi ja}{n}\right) + 2\cos\left(\frac{2\pi jb}{n}\right) = -1,$$

- Let $\Gamma = \operatorname{Circ}(n; \{\pm a, \pm b\})$ for $1 \le a < b < n/2$.
- as k = 4, *n* must be odd.
- We have that -1 is an eigenvalue of Γ if and only if for some $0 \le j \le n-1$ we have that

$$\chi_j(\{\pm a, \pm b\}) = 2\cos\left(\frac{2\pi ja}{n}\right) + 2\cos\left(\frac{2\pi jb}{n}\right) = -1,$$

which is equivalent to

$$\cos\left(\frac{2\pi ja}{n}\right) + \cos\left(\frac{2\pi jb}{n}\right) + \cos\frac{\pi}{3} = 0.$$

Therefore, by the above solution of Crosby, one of the following holds for some integers k_1, k_2 :

$$\Big\{\frac{2\pi ja}{n}, \frac{2\pi jb}{n}\Big\} = \Big\{\frac{\pi}{2} + k_1\pi, \pm \frac{2\pi}{3} + 2k_2\pi\Big\},\$$

Therefore, by the above solution of Crosby, one of the following holds for some integers k_1, k_2 :

$$\left\{\frac{2\pi ja}{n},\frac{2\pi jb}{n}\right\} = \left\{\frac{\pi}{2} + k_1\pi,\pm\frac{2\pi}{3} + 2k_2\pi\right\},\,$$

2.

1.

$$\left\{\frac{2\pi ja}{n},\frac{2\pi jb}{n}\right\} = \left\{\pm\frac{\pi}{3}+2k_1\pi,\pi+2k_2\pi\right\},\,$$

Therefore, by the above solution of Crosby, one of the following holds for some integers k_1, k_2 :

1.
$$\left\{\frac{2\pi j a}{n}, \frac{2\pi j b}{n}\right\} = \left\{\frac{\pi}{2} + k_1 \pi, \pm \frac{2\pi}{3} + 2k_2 \pi\right\},$$
2.
$$\left\{\frac{2\pi j a}{n}, \frac{2\pi j b}{n}\right\} = \left\{\pm \frac{\pi}{3} + 2k_1 \pi, \pi + 2k_2 \pi\right\},$$
3.
$$\left\{\frac{2\pi j a}{n}, \frac{2\pi j b}{n}\right\} = \left\{\pm \frac{2\pi}{5} + 2k_1 \pi, \pm \frac{4\pi}{5} + 2k_2 \pi\right\}.$$

• It is easy to see that cases 1. and 2. above are not possible as *n* is odd.

- It is easy to see that cases 1. and 2. above are not possible as *n* is odd.
- It follows that all eigenvectors (for eigenvalue -1) have the same value at coordinates 0, 5*a* and 5*b*.
- It is easy to see that cases 1. and 2. above are not possible as *n* is odd.
- It follows that all eigenvectors (for eigenvalue -1) have the same value at coordinates 0, 5a and 5b.
- As we are looking for an eigenvector with all entries pairwise different, 5*a* and 5*b* must be multiples of *n*.

- It is easy to see that cases 1. and 2. above are not possible as *n* is odd.
- It follows that all eigenvectors (for eigenvalue -1) have the same value at coordinates 0, 5*a* and 5*b*.
- As we are looking for an eigenvector with all entries pairwise different, 5*a* and 5*b* must be multiples of *n*.
- As a < b < n/2 we have a = n/5 and b = 2n/5.

- It is easy to see that cases 1. and 2. above are not possible as *n* is odd.
- It follows that all eigenvectors (for eigenvalue -1) have the same value at coordinates 0, 5*a* and 5*b*.
- As we are looking for an eigenvector with all entries pairwise different, 5*a* and 5*b* must be multiples of *n*.
- As a < b < n/2 we have a = n/5 and b = 2n/5.
- By connectedness, n = 5, a = 1 and b = 2.

Closed Distance Magic Circulants - valency 5

Theorem (Fernández, M., Maleki, Sarobidy)

Let Γ be a connected circulant graph with valency 5. Then Γ is closed distance magic if and only if Γ is isomorphic to $\operatorname{Circ}(\mathbb{Z}_n; \{\pm 1, \pm c, n/2\})$ with *n* even and 1 < c < n/2, and one of the following (i)–(iv) holds:

Thank you!