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Complex Curves, Fuchsian Groups Riemann Surfaces

Given an orientable, closed surface X of genus g ≥ 2

The equivalence:

(X ,M(X ), complex atlas) (M(X ) = 〈x , y〉, p(x , y) = 0, the field of meromorphic
functions on X )

X ∼= H
∆

, with ∆ a (cocompact) Fuchsian group
∆ discrete subgroup of PSL(2,R). Riemann Uniformization Theorem (Koebe)

Surface Fuchsian Group Γg = 〈a1, b1, . . . , ag , bg |Π[ai , bi ] = 1〉

(X ,M(X ), complex curve) (M(X ) = C[x , y ]/p(x , y), the field of rational functions
on X )

The curve X given by the polynomial p(x , y) and the meromorphic function

x : X → Ĉ.
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Meromorphic Functions and Abelian Integrals

We have seen in elementary Calculus: arcsin(x) =
∫ x

0
du√
1−u2

Later in Complex Analysis

arcsin(z) =
∫ z

0
du√
1−u2

and La(z) =

∫ z

0

√
1 + (a2 − 1)u2

√
1− u2

du

But there are issues: the integrand is multi-valued, there are singularities in the
integrand, and the value of the integrand depends on the homotopy class of the path
of integration.

This happens in general for integrals of the form
∫ z

z0
R(x , y)du with R(x , y) a rational

function, y a locally defined function such that
F (x , y) = r0(x)yn + ri (x)yn−1 + · · ·+ rn(x) = 0, ri (x) rational functions; and, the
path of integration does not pass through any singularity of the integrand.

La(z) =

∫ z

0

√
1 + (a2 − 1)x2

√
1− x2

dx , R(x , y) = y ,with F (x , y) = y2 −
1 + (a2 − 1)x2

1− x2
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We make some ‘branch cuts’ on the plane such that the cuts are non-intersecting
paths joining the branch points to ∞, the remainder of the complex plane is simply
connected. The function y and, hence, the integrand can be analytically continued
across a branch cut, away from singularities

Milagros Izquierdo Regular Maps and Curve with Large Symmetry



Riemann Surfaces

We construct a Riemann Surface for the function R(x , y), with y is a locally defined
function such that F (x , y) = r0(x)yn + ri (x)yn−1 + · · ·+ rn(x) = 0, ri (x) rational:

I Take n (n the degree of F (x , y)) copies of the complex plane with ‘branch cuts’

I Each copy of the cut plane defines a branch of y

I Glue, using analytical continuation, the cut planes along the branch cuts
(keeping y continuous)

I Compactify by adding points at infinity and points corresponding to branch
points

I Resolve singularities

We have a Riemann surface S with:

I Two important meromorphic functions x : S → Ĉ and y : S → Ĉ
I The branch cuts decompose the surface into n polygons. The function x lifts

the base cut plane bijectively to the polygons.

I x , y generate the field of meromorphic functions on X , C(S), is a degree n
extension of the rational functions field C(S) = C(x , y)/〈F (x , y)〉

Riemann Ph.D. Thesis: Foundations for a general theory of functions of a complex
variable, 1851
Hurwitz: Über Riemann’sche Flächen mit gegebenen Verzweigungspunkten, 1891
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Since RUT

(X , complex atlas) ∼= H/∆, with ∆ a (cocompact) Fuchsian group

Surface Fuchsian Group Γg = 〈a1, b1, . . . , ag , bg |Π[ai , bi ] = 1〉

I Teichmüller space Tg , space of geometries on a surface of genus g
Tg = {σ : Γ0 → PSL(2,R) |σinjective, σ(Γ0) discrete }/PSL(2,R)

A Riemann surface with prescribed geometry is given by a marked polygon (and
all its conjugate by a hyperbolic transformation) in the hyperbolic plane, or the
space of conjugacy classes of Fuchsian groups isomorphic to the abstract
group Γ0 = 〈a1, b1, . . . , ag , bg ; a1b1a−1

1 b−1
1 . . . ag bg a−1

g b−1
g = 1〉.

I Moduli space Mg , space (orbifold) of conformal structures on a surface of
genus g

I Mapping Class Group (Teichmüller Modular Group)

M+
g = Diff +(X )/Diff0(X ) = Out(Γg )

I Orbifold Universal Covering Mg = Tg/M+
g

Bg Branch Locus = Singular Locus of Mg as orbifold (Not the singular set of
M2,3 as algebraic variety, A. Costa- A. Porto for a proof with Fuchsian
groups)

Milagros Izquierdo Regular Maps and Curve with Large Symmetry



Nielsen Realization Theorem (Abikoff 1980, Macbeath for NEC groups)

Bg = {X ∈Mg |Aut(X ) 6= 1}
(B2 : surfaces with more automorphisms than the hyperelliptic involution)

g = 1 Euclidean case: T1 = H,M1 = PSL(2,Z),B1 = {i , e iπ/3},M1 hyperbolic
triangle with a vertex at ∞, the modular space, the nodal curve y2 = x3.

Considering (X , dianalytic atlas, top. type t) ∼= H/∆̂, with ∆̂ an NEC group
T K

t and MK
t the Teichmüller and moduli space of Klein surfaces of topological type t.

MK
t = T K

t /M(∆̂), M(∆̂) = Out(∆̂). Branch locus BK
t

Studies of branch locus and moduli spaces:

For g = 1 Schwarz

For g = 2 Bolza (1887, moduli of automorphic functions)

For hyperbolic surfaces Harvey, Natanzon, Macbeath (Macbeath-Singerman).
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Number Fields, Triangular Groups and Dessins d’Enfants

Belyi Th: A plane complex curve X is defined over a number field iff there is a finite
N-sheeted orbifold-covering = meromorphic function β : X → Ĉ of the Riemann
sphere ramified on at most three points {0, 1,∞} (the meromorphic function β is
Belyi function).
In the case of Klein’s Quartic, a 7-sheeted orbifold-covering of the Riemann sphere
ramified at three points (y7 = x2(x − 1)).

The meromorphic function β induces a cell-decomposition H of the Riemann surface
X : the dessin d’enfant (map or hypermap). The preimages of 0 providing the
hypervertices, the preimages of 1 the hyeredges and the preimages of ∞ the
hyperfaces.
In the case of Klein’s Quartic, the tessellation is the well-known tessellation with 168
triangles, each one representing an element in PSL(2, 7).

Translating into Fuchsian groups: β : H/Γg → H/∆(l ,m, n), where 1
l

+ 1
m

+ 1
n
< 1.

The dessin has type (l ,m, n), and (orbifold-covering) monodromy
θβ : ∆(l ,m, n)→ G = Mon(H)

In the case of Klein’s Quartic, θy : ∆(2, 3, 7)→ PSL(2, 7) = Mon(H).

Only interested in uniform dessin: Γg = H = θ−1
β (Stb(1)) (a surface group).
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Some classic curves and dessins d’enfants:

I Wiman’s curve of type I in genus g , y2 = (x2g+1 − 1), G = C4g+2, and quotient
orbifold uniformised by ∆(2, 2g + 1, 4g + 2)

I Wiman’s curve of type II in genus g , y2 = x(x2g − 1), G = C4g o2g−1 C2, and
quotient orbifold uniformised by ∆(2, 4, 4g). In genus two this curve is Bolza’s
curve with G2 = GL(2, 3) and Fuchsian gr. ∆(2, 3, 8),

I Accola-Maclachlan’s curve in genus g , y2 = x(x2g+2 − 1),
G = (C2g+2 × C2) o C2, the quotient uniformised by ∆(2, 4, 2g + 2)

For genera g ≡ 3 mod 4 there is one more curve: Kulkarni curve
y2g+2 = x(x − 1)g−1(x + 1)g+2, and gr.
G =

〈
x , y : x2g+2 = y4 = (xy)2 = 1; y2xy2 = xg+2

〉
, the quotient uniformised

by ∆(2, 4, 2g + 2).

I Picards’s curve y3 = (x4 − 1), G = C12, the quotient uniformised by ∆(4, 3, 12)

I Klein’s Quartic y7 = x2(x − 1), G = PSL(2, 7), the quotient uniformised by
∆(2, 3, 7)

I Bring’s curve (genus 4) y5 = (x3 − 1), G = Σ5, the quotient uniformised by
∆(2, 4, 5)

I Wiman’s sextic (genus 6) G = Σ5, the quotient uniformised by ∆(2, 4, 6) and
x6 + y6 + z6 + (x2 + y2 + z2)(x4 + y4 + z4) = 12x2y2z2

Wiman 1895, 1896, Accola 1968, Maclachlan 1969, Kulkarni 1991, 1997
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I Two curves in genus 8 with G = PGL(2, 7), the quotient uniformised by
∆(2, 3, 8)

I Macbeath’s three curves in genus 14 with G = PSL(2, 13), the quotient
uniformised by ∆(2, 3, 7)

I Given a prime p ≡ 1 mod5, four curves of genus p + 1 with G = Cp o C10, the
quotient uniformised by ∆(2, 5, 10)

I Given a prime p ≡ 1 mod8, four curves of genus p + 1 with G = Cp o C8, the
quotient uniformised by ∆(2, 8, 8)

I Given a prime p ≡ 1 mod3, two curves of genus p + 1 with G = (Cp o C6)×C2,
the quotient uniformised by ∆(2, 6, 6)

I Given a prime p ≥ 3, one curve of genus g = (p − 1)2, xpyp − xp − yp + 1 = 0
with 8(g + 1 + 2

√
g) automorphisms and G = (Cp × Cp) o D4, the quotient

uniformised by ∆(2, 4, 2p).

I One curve in genus g = 3n−1 with G = C3n−1 o GL(2, 3), the quotient
uniformised by ∆(2, 3, 8)

Macbeath 1969, Conder 2009, Conder-Kulkarni 1992, Gromadzki-Maclachlan 1993,
González-Diez 1995, Ying 2006, Wootton 2007, Belolipetsky-Jones 2005,
Conder-Siran-Tucker 2010, Costa-I-Ying 2010.
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Fuchsian Groups

I ∆ (cocompact) discrete subgroup of PSL(2,R)

I A (compact) Riemann Surface (Orbifold) of genus g ≥ 2 X = H
∆

I ∆ has presentation:

generators: x1, ..., xr , a1, b1, ..., ah, bh

relations: x
mi
i , i = 1 : r , x1...xr a1b1a−1

1 b−1
1 ...ahbha−1

h b−1
h

xi : generator of the maximal cyclic subgroups of ∆

I X = H
∆

: orbifold with r cone points and underlying surface of genus g

I Algebraic structure of ∆ and geometric structure of X are determined by the
signature s(∆) = (h; m1, . . . ,mr )

I ∆ is the orbifold-fundamental group of X .
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I Area of ∆: area of a fundamental region P

µ(∆) = 2π(2h − 2 +
∑r

1 (1− 1
mi

))

But for us µ(∆) = (2h − 2 +
∑r

1 (1− 1
mi

)), ( -Euler characteristic of the

hyperbolic orbifold)

I X hyperbolic equivalent to P/〈pairing〉

I Poincaré’s Th: ∆ = 〈pairing〉 (Maskit, 1971)

I Riemann-Hurwitz Formula: If Λ is a subgroup of finite index, N, of a Fuchsian

group ∆, then N = µ(Λ)
µ(∆)

( Euler characteristic is multiplicative under coverings)

I RUT: Any Riemann surface of genus g ≥ 2 is uniformized by a surface Fuchsian
group Γg = 〈a1, b1, ..., ag , bg ; a1b1a−1

1 b−1
1 ...ag bg a−1

g b−1
g 〉
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Morphisms and Orbifold-Coverings

G finite group of automorphisms of Xg = H/Γg ,

Γg a surface Fuchsian group if there exist

∆ Fuchsian group and epimorphism θ : ∆→ G with Ker(θ) = Γg

θ is the monodromy of the regular covering f : H/Γg →H/∆

H
↙

X/ = H/Γg ↓
↘

X/G = H/∆

∆: lifting to H of G
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Generally, an inclusion i : Λ→ ∆ of Fuchsian groups determines a covering of
Riemann orbifolds:

A morphism (orbifold-covering) f : X = H/Λ→ Y = H/∆,

Covering f determined by (the transitive) monodromy θ : ∆→ Σ|∆:Λ|,

Λ = θ−1(Stb(1))
(symbol ↔ Λ-coset↔ sheet for f ↔ copy of fund. polygon for ∆)

Theorem (Singerman 1970) Λ (and so i) determined θ (and ∆): If
s(∆) = (h; m1, . . . ,mr ), then s(Λ) = (h′; m′11, . . . ,m

′
1s1
, . . . ,m′r1, . . . ,m

′
rsr

) iff
θ : ∆→ Σ|∆:Λ| s.t.

i) Riemann-Hurwitz µ(Λ)
µ(∆)

= |∆ : Λ|

ii) θ(xi ) product of si cycles each of length mi
m′i1

, . . . , mi
m′isi

We say the morphism is uniform if Λ = Γg . In this case θ(xi ) product of |∆:Λ|
mi

cycles

each of length mi

The polygonal graph of the tessellation of X given by the |∆ : Λ| copies of Y is the
dual of the Schreier coset-graph of i : Λ→ ∆.
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(Uniform) Maps and Hypermaps and Fuchsian Groups

A Belyi function β : X → Ĉ induces a cell-decomposition H of the Riemann surface
X : the dessin d’enfant (map or hypermap). The preimages of 0 providing the
hypervertices, the preimages of 1 the hyeredges and the preimages of ∞ the
hyperfaces.

Geometrically, β : X = H/Γg → Ĉ = H/∆(l ,m, n) as a covering of Riemann orbifolds

X and Ĉ(l ,m, n) uniformized by Γg and ∆(l ,m, n) respectively.

Fuchsian groups: i : Γg → ∆(l ,m, n), where 1
l

+ 1
m

+ 1
n
< 1. The dessin has type

(l ,m, n), and ( orbifold-covering) monodromy
θβ : ∆(l ,m, n)→ G = Mon(H) ≤ Σ|∆:Γg |

When m = 2 we have a map of type {l , n}.
Monodromy group H: Mon(H) = 〈a, s ; al = sm = (as)n = · · · = 1〉 ≤ ΣN = Σ|∆:H|

The group H(∼= Γg ) = θ−1
β (Stb(1)) ≤ ∆(l ,m, n), the hypermap group.

Mon(H) acts transitively on the H-cosets. The permutation a has as cycles the cycles
around hypervertices, s the cycles around (hyper)edges, and as the cycles around
hyperfaces (always consistent with the orientation of X ).

Two dessins d’enfants of type (l ,m, n) are isomorphic if their hypermap groups are
conjugate in ∆(l ,m, n), i.e. they defined the same complex structure of
X = H/H = H/Γg .
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Some Confusion

A morphism of dessins is given by an inclusion of subgroups H1 ≤ H2 of triangle
Fuchsian groups, inducing a morphism of Riemann orbifolds and a covering of the
embedded graphs.

Aut(H) ≤ Mon(H) = G . (I only consider orientation preserving automorphisms)
Notice that for any dessin d’enfant H on a Riemann surface X = H/Γg , one has
Aut(H) ≤ Aut(X ).

A dessin d’enfant H with hypermap group H is (orientably) regular iff Aut(H) acts
transitively on the H-cosets, i.e. Aut(H) = Mon(H) = G . That is, the monodromy
θβ : ∆(l ,m, n)→ G = Mon(H) is a quotient, H = Γg E ∆(l ,m, n) and the covering

β : X = H/Γg → Ĉ = H/∆(l ,m, n) is regular.

Of course Mon(H) ≤ Aut(X ).

A (orientably) regular dessin d’enfant H with monodromy group
Aut(H) = ∆(l ,m, n)/H = 〈a, s〉 is reflexible if the function defined by
a→ a−1, s → s−1 is an automorphism of G , otherwise is said to be chiral.

Reflexible dessin ≡ dessin on a symmetric surface (admitting an anticonformal
involution)

I learnt this from the Southampton Extended Group (David & Gareth 1978, people in
Southampton, Porto, Auckland, Slovakia, Madrid, USA, Frankfurt, ...)
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Regular maps of genus g with 4g conformal
automorphisms

With a few exceptions an oriented regular dessin d’enfant H with Aut(H) of order 4g
is a (medial) truncation of the regular map W determining Wiman’s curve of type II
y2 = x(x2g − 1).

W is a map of type {4, 4g} with Aut(W) = C4g o2g−1 C2 for g ≥ 3.
For g = 2, W is the map of type {3, 8} with Aut(W) = GL(2, 3) on Bolza’s curve, the
curve of genus 2 with largest number of automorphisms (Wiman 1895, Kulkarni 1993).

Algorithm (Aut(H) ≤ Aut(X )): we will determine first actions of groups of order 4g
on a curve of genus g ; i.e. determine groups ∆ and monodromies θ such that
θ : ∆→ G with Ker(θ) = Γg and |G | = 4g .
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With the following exceptions:

I A family in genus 3 with quotient uniformised by ∆(2, 2, 3, 3) and Aut(X ) = A4

I A family in genus 6 with quotient uniformised by ∆(2, 2, 3, 4) and Aut(X ) = Σ4

I A family in genus 15 with quotient uniformised by ∆(2, 2, 3, 5) and Aut(X ) = A5

I Picard’s curve in genus 3 with quotient uniformised by ∆(3, 4, 12) and
Aut(X ) = C12

I A curve in genus 6 with quotient uniformized by ∆(3, 8, 8) and
Aut(X ) = C3 o C8, a truncation of the map {6, 8} with
Aut = 〈r , s ; a6 = (as)2 = (as−1a)2 = 1, a3 = s4〉

I A curve in genus 6 with quotient uniformized by ∆(4, 6, 6) and
Aut(X ) = SL(2, 3), a truncation of the map {6, 8} with Aut = C8 o C6

I A curve in genus 6 with quotient uniformized by ∆(4, 6, 6) and
Aut(X ) = D4 × C3

I A curve in genus 12 with quotient uniformised by ∆(4, 6, 8) and
Aut(X ) = 〈2, 3, 4〉

I A curve in genus 12 with quotient uniformised by ∆(4, 6, 8) and
Aut(X ) = (C3 o C8) o C2

I A curve in genus 30 with quotient uniformised by ∆(4, 6, 10) and
Aut(X ) = C15 o D4

I A curve in genus 30 with quotient uniformised by ∆(4, 6, 10) and
Aut(X ) = SL(2, 5)

All the exceptional maps and hypermaps are reflexible, embedded in symmetric
Riemann surfaces.
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Actual actions, all genera

The possible signatures of Fuchsian groups for all genera are
∆(3, 6, 2g), ∆(2, 4g , 4g), ∆(4, 4, 2g) and ∆(2, 2, 2, 2g).

I There is NO action θ : ∆(3, 6, 2g)→ G4g

I The unique action; θ : ∆(2, 4g , 4g)→ C4g = 〈a ; a4g = 1〉 defined by
θ(x1) = a2g , θ(x2) = a2g−1.

I The unique action;
θ : ∆(4, 4, 2g)→ G4g = 〈a, t ; a2g = t4 = 1, t2 = ag , t3at = a−1〉 defined by
θ(x1) = t, θ(x2) = t3a.
G4g is the central product of C2g by C4.

I The unique action θ : ∆(2, 2, 2, 2g)→ D2g = 〈a, s ; a2g = s2 = sa2 = 1〉 defined
by θ(x1) = s, θ(x2) = sag−1, θ(x3) = ag .
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The only curves X with |Aut(X )| = 4g form an equisymmetric, uniparametric family S
given by the monodromy θ : ∆(2, 2, 2, 2g)→ D2g = 〈a, s ; a2g = s2 = sa2 = 1〉 defined
by θ(x1) = s, θ(x2) = sag−1, θ(x3) = ag . This family does exist for all genera g ≥ 2.

As a Riemann surface, S is the Riemann Sphere with three punctures. One of the
punctures is Wiman’s curve of type II, the other two are nodal curves. Within S there
are three real-uniparametric families of symmetric Riemann surfaces building three
arcs, connected by Wiman’s curve and the two nodal curves.

To see that Wiman’s curve of type II (a symmetric Riemann surface) is in the closure
of the family one checks that ∆(2, 4, 4g) contains a subgroup with signature
(0; 2, 2, 2, 2g) and that the action with monodromy above extends to an action of
C4g o2g−1 C2 with with quotient orbifold uniformized by ∆(2, 4, 4g).

All the surfaces in the family S (and Wiman’s curve) are hyperelliptic.

(Bujalance-Costa-I 2017, Conder’s homepage, and MAGMA for genera 273, 276, 420,
429 and 841)
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Dessins d’Enfants on Wiman’s Curve of Type II

The regular dessins with 4g automorphisms existing for all genera (g ≥ 2) given by
the non-maximal actions:

I θ1 : ∆(2, 4g , 4g)→ C4g = 〈a ; a4g = 1〉, θ1(x1) = a2g , θ1(x2) = a2g−1 and

I θ2 : ∆(4, 4, 2g)→ G4g = 〈a, t ; a2g = t4 = 1, t2 = ag , t3at = a−1〉 defined by
θ2(x1) = t, θ2(x2) = t3a

The actions extend to a maximal action of C4g o2g−1 C2 = 〈a, s ; a4g = s2 = (sa)4 =
1, sas = a2g−1〉 = 〈a, t ; a4g = t4 = (ta)2 = 1, t2 = a2g t3at = a2g−1〉 giving Wiman’s
map W on Wiman’s curve XW ; y2 = x(x2g − 1) of type II.

( Bujalance-Conder, Kulkarni 1993, Bujalance-Costa-I 2017)
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Wiman’s map W on Wiman’s curve XW ; y2 = x(x2g − 1).

For g = 2 Wiman’s map is the Bolza’s map of type {3, 8} and automorphism group
GL(2, 3) (Bolza 1887, Wiman 1895, Singerman 1970, Girondo 2003, ... )

In genus g ≥ 3 is the map of type {4, 4g} with Mon(W) = Aut(XW ) = 〈as, s〉
where

as = (1, 2, 3, . . . , 4g)(4g + 1, 4g + 2, 4g + 3, . . . , 4g + 4g)

and

s =

g−1∏
k=0

(4g + 4k + 1, 4g − 4(g − k) + 1)(4g + 4k + 2, 4g − 4(g − k) + 2)

(4g + 4k + 3, 4g − 4(g − k) + 3)(4g + 4(k + 1), 4g − 4(g − k − 1)).
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The regular dessins d’enfants given by these actions are medial truncations T1, T2 of
the regular map W of type {4, 4g} with (Aut(W) = C4g o2g−1 C2). Their
monodromy groups are:

I Mon(T1) = 〈(1, 2, 3, . . . , 4g),
∏g

i=1(i , 2g + i)〉
I Mon(T2) = 〈(1, 2, 3, . . . , 2g)(2g + 1, 2g + 2, . . . , 4g), (1, 2g + 1, g + 1, 3g +

1)
∏g

i=2(i , 4g + 2− i , g + i , 3g + 2− i)〉

The extended group of automorphisms of the map of type {4g , 4g} is D4g .

The extended group of automorphisms of the hypermap of type (4, 4, 2g) is
G4g o C2 = 〈a, t, σ ;σ2 = a2g = t4 = (σa)2 = (σt)2 = 1, t2 = ag , t3at = a−1〉: the
semidirect product of the central product of C2g and C4 by C2.
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The hypermap (4, 4, 4) and the map {3, 8} in genus 2

THANK YOU
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