On the automorphisms of cubic vertex-transitive graphs

Micael Toledo¹ (joint work with P. Potočnik and G. Verret)

¹Université Libre de Bruxelles

Algebraic Graph Theory International Webinar

Let Γ be a graph. Then

- We say Γ is cubic if it is simple, connected and 3-valent;
- We let $Aut(\Gamma)$ denote the automorphism group of Γ ;
- If a subgroup $G \leq Aut(\Gamma)$ acts transitively on the vertices of Γ , then we say Γ is *G*-vertex-transitive.

* 3 > < 3</p>

•
$$o(g) =$$
the order of g ;

* 3 > < 3</p>

- o(g) =the order of g;
- $\ell(g)$ = the length of the longest orbit of g;

- o(g) =the order of g;
- $\ell(g)$ = the length of the longest orbit of g;
- $\mu(g) =$ the number of orbits of g.

- o(g) =the order of g;
- $\ell(g)$ = the length of the longest orbit of g;
- $\mu(g) =$ the number of orbits of g.

Remark: An orbit of g is an orbit of $\langle g \rangle$, the cyclic group generated by g.

Let Γ be a graph. Define

•
$$o(\Gamma) = \max\{o(g) \mid g \in \operatorname{Aut}(\Gamma)\};$$

• $\ell(\Gamma) = \max\{\ell(g) \mid g \in \operatorname{Aut}(\Gamma)\};$

$$\mu(\Gamma) = \max\{\mu(g) \mid g \in \operatorname{Aut}(\Gamma), g \neq 1\}.$$

Notice that

• "small" $\mu(\Gamma)$ implies "large" $\ell(\Gamma)$ and $o(\Gamma)$.

★ ∃ ► < ∃ ►</p>

- What can we say about a graph Γ with large $o(\Gamma)$?
- Can we give a "good" upper bound for o(Γ) in terms of |V(Γ)|?
- Under which conditions does the equality $o(\Gamma) = \ell(\Gamma)$ hold?
- What is the relation between $\mu(\Gamma)$ and $o(\Gamma)$?

伺下 イヨト イヨト

Split Praeger-Xu graphs

SPX(1,s)

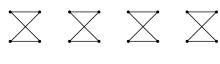
Micael Toledo (joint work with P. Potočnik and G. Verret) On the automorphisms of cubic vertex-transitive graphs

Split Praeger-Xu graphs

SPX(1,s)

Micael Toledo (joint work with P. Potočnik and G. Verret) On the automorphisms of cubic vertex-transitive graphs

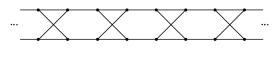
Split Praeger-Xu graphs



SPX(1,s)

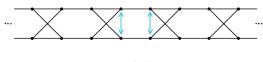
Micael Toledo (joint work with P. Potočnik and G. Verret) On the automorphisms of cubic vertex-transitive graphs

• • = • • = •



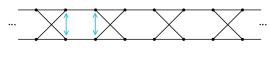
Micael Toledo (joint work with P. Potočnik and G. Verret) On the automorphisms of cubic vertex-transitive graphs

• E > < E</p>



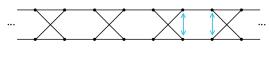
Micael Toledo (joint work with P. Potočnik and G. Verret) On the automorphisms of cubic vertex-transitive graphs

* 3 > < 3</p>



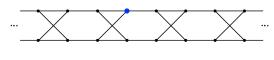
Micael Toledo (joint work with P. Potočnik and G. Verret) On the automorphisms of cubic vertex-transitive graphs

* E > < E</p>



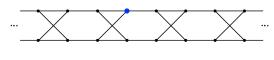
Micael Toledo (joint work with P. Potočnik and G. Verret) On the automorphisms of cubic vertex-transitive graphs

* E > < E</p>



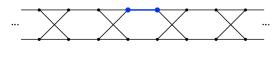
Micael Toledo (joint work with P. Potočnik and G. Verret) On the automorphisms of cubic vertex-transitive graphs

• E > < E</p>



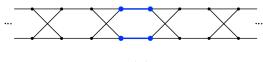
Micael Toledo (joint work with P. Potočnik and G. Verret) On the automorphisms of cubic vertex-transitive graphs

• E > < E</p>



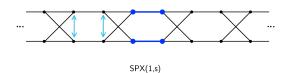
Micael Toledo (joint work with P. Potočnik and G. Verret) On the automorphisms of cubic vertex-transitive graphs

★ ∃ ► < ∃ ►</p>



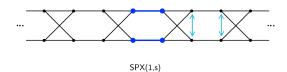
Micael Toledo (joint work with P. Potočnik and G. Verret) On the automorphisms of cubic vertex-transitive graphs

• E > < E</p>



Micael Toledo (joint work with P. Potočnik and G. Verret) On the automorphisms of cubic vertex-transitive graphs

* E > < E</p>



Micael Toledo (joint work with P. Potočnik and G. Verret) On the automorphisms of cubic vertex-transitive graphs

* E > < E</p>

Stabilizers

Theorem

Let Γ be a cubic vertex-transitive graph with automorphism group G and let G_v be the stabilizer of a vertex v. If $g \in G_v$ then

 $o(g) \leq 6.$

Theorem

Let Γ be a cubic vertex-transitive graph and let $g \in Aut(\Gamma)$. If X and Y are two orbits of g, then

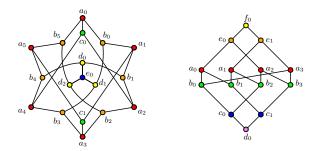
$$\frac{1}{6} \le \frac{|X|}{|Y|} \le 6.$$

In particular,

$$\frac{\ell(g)}{6} \leq |X|.$$

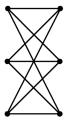
つくで

Let Γ be a cubic G-vertex-transitive graph not isomorphic to $K_{3,3}$, and let $g \in G$. If X is a vertex-orbit of g, then $|X| = \frac{\ell(g)}{k}$ for some $k \in \{1, 2, 3, 4, 6\}$.



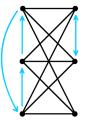
- E - E

If Γ is a cubic G-vertex-transitive graph other than $K_{3,3}$, then $o(g) = \ell(g)$ for all $g \in G$.

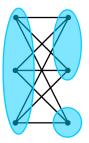


A B M A B M

If Γ is a cubic G-vertex-transitive graph other than $K_{3,3}$, then $o(g) = \ell(g)$ for all $g \in G$.



If Γ is a cubic G-vertex-transitive graph other than $K_{3,3}$, then $o(g) = \ell(g)$ for all $g \in G$.



< 3 > 4 3 >

If Γ is a cubic G-vertex-transitive graph other than $K_{3,3}$, then $o(g) = \ell(g)$ for all $g \in G$.

御 と く き と く き とう

If Γ is a cubic G-vertex-transitive graph other than $K_{3,3}$, then $o(g) = \ell(g)$ for all $g \in G$.

Corollary

If Γ is a cubic G-vertex-transitive graph, then $o(\Gamma) = \ell(\Gamma)$.

.

If Γ is a cubic G-vertex-transitive graph other than $K_{3,3}$, then $o(g) = \ell(g)$ for all $g \in G$.

Corollary

If Γ is a cubic *G*-vertex-transitive graph, then $o(\Gamma) = \ell(\Gamma)$.

Corollary

If Γ is a cubic G-vertex-transitive graph of order n, then

$$o(g) \leq n$$

for all $g \in G$.

.

Let G be a transitive permutation group on a set Ω , let $\omega \in \Omega$, let p be a prime and let k be an integer coprime to p such that $\exp(G_{\omega}) = kp^{\alpha}$ for some $\alpha \ge 1$. Then

 $o(g) \leq k\ell(g)$

for every $g \in G$. In particular, if G_{ω} is a p-group, then for every $g \in G$ we have $o(g) = \ell(g)$.

Theorem

If Γ be a 4-valent G-vertex-transitive graph then $o(g) \leq 9n$ for all $g \in G.$

伺下 イヨト イヨト

Question

For d > 4, does there exist a constant c_d such that $o(\Gamma) < c_d \cdot n$ for every d-valent G-vertex-transitive graph of order n?

• • = • • = •

• Let G be a permutation group acting on a set Ω and let $g \in G$. We say an orbit X of g is a regular orbit if the |X| = o(g) (i.e. X is of maximal size).

• • = • • = •

- Let G be a permutation group acting on a set Ω and let $g \in G$. We say an orbit X of g is a regular orbit if the |X| = o(g) (i.e. X is of maximal size).
- Every automorphism of a cubic vertex-transitive graph other than $K_{3,3}$ admits a regular orbit.

• • = • • = •

- Let G be a permutation group acting on a set Ω and let $g \in G$. We say an orbit X of g is a regular orbit if the |X| = o(g) (i.e. X is of maximal size).
- Every automorphism of a cubic vertex-transitive graph other than $K_{3,3}$ admits a regular orbit.
- This is not true in general, as a complete graph of order n can have an automorphism whose order greatly surpasses n.

- Let G be a permutation group acting on a set Ω and let $g \in G$. We say an orbit X of g is a regular orbit if the |X| = o(g) (i.e. X is of maximal size).
- Every automorphism of a cubic vertex-transitive graph other than $K_{3,3}$ admits a regular orbit.
- This is not true in general, as a complete graph of order n can have an automorphism whose order greatly surpasses n.
- Graphs admitting automorphisms with regular orbits have been studied in the context of multicirculant graphs.

Definition

If Γ is a graph and and $g \in Aut(\Gamma)$ we say two orbits of g, X and Y, are adjacent if there is a vertex in X that is adjacent to some vertex in Y.

· · · · · · · · · ·

Definition

If Γ is a graph and and $g \in Aut(\Gamma)$ we say two orbits of g, X and Y, are adjacent if there is a vertex in X that is adjacent to some vertex in Y.

Theorem

Let Γ be a cubic vertex-transitive graph not isomorphic to $K_{3,3}$, K_4 , the cube graph Q_3 , the Petersen graph, the Möbius-Kantor graph, the Pappus graph, the Heawood graph.

Then, for every $g \in Aut(\Gamma)$, either

1 $\langle g \rangle$ is transitive on $\mathrm{V}(\Gamma)$, or

2 every regular orbit of g is adjacent to another regular orbit.

・ 同 ト ・ ヨ ト ・ ヨ ト

Let Γ be a cubic G-vertex-transitive graph of order n and let $g \in G$. Then $\mu(g) \leq \frac{17n}{6 \text{ o}(g)}$.

• • = • • = •

Let Γ be a cubic G-vertex-transitive graph of order n and let $g \in G$. Then $\mu(g) \leq \frac{17n}{6 o(g)}$.

Theorem (P. Potočnik, P. Spiga)

Let Γ be a cubic G-vertex-transitive graph of order n and let $g \in G$ be a non-trivial automorphism fixing more than $\frac{n}{3}$ vertices. Then one of the following occurs:

- **1** $n \leq 20$ and Γ is one of six exceptional graphs;
- **2** Γ is a split Praeger-Xu SPX(r, s);

伺 ト イヨト イヨト

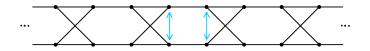


Image: A Image: A

э

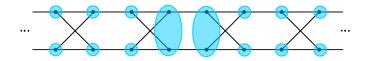


Image: A Image: A

э

• SPX(1, s) has n = 4s vertices and admits an automorphism g such that $\mu(g) = n - 2 = 2\frac{n}{o(g)} - 2$.

何 ト イヨ ト イヨ ト

- SPX(1, s) has n = 4s vertices and admits an automorphism g such that $\mu(g) = n 2 = 2\frac{n}{o(g)} 2$.
- No non-trivial automorphism of SPX(1, s) has more than $2\frac{n}{o(g)} 2$.

何 ト イヨ ト イヨ ト

-

- SPX(1, s) has n = 4s vertices and admits an automorphism g such that $\mu(g) = n 2 = 2\frac{n}{o(g)} 2$.
- No non-trivial automorphism of SPX(1, s) has more than $2\frac{n}{o(g)} 2$.
- If Γ is a cubic graph and $g \in Aut(\Gamma)$ is transitive, then $\mu(g) = 1 = 2\frac{n}{o(g)} 1$.

伺 と く き と く き と … き

Let Γ be a cubic G-vertex-transitive graph of order n and let $g \in G$. Then $\mu(g) \leq \frac{17n}{6 o(g)}$.

Conjecture

Let Γ be a cubic G-vertex-transitive graph of order n and let $g \in G$. Then $\mu(g) \leq 2\frac{n}{o(g)} - 1$.

ゆ と く ヨ と く ヨ と

Let Γ be a cubic G-vertex-transitive graph of order n and let $g \in G$. If Γ is not isomorphic to $K_{3,3}$ or a split Praeger-Xu graph SPX(r, s), then at least $\frac{5}{12}n$ vertices are contained in a regular orbit of g.

Let Γ be a cubic *G*-vertex-transitive graph of order *n* and let $g \in G$. If Γ is not isomorphic to $K_{3,3}$ or a split Praeger-Xu graph SPX(r, s), then at least $\frac{5}{12}n$ vertices are contained in a regular orbit of *g*.

Conjecture

Let Γ be a cubic G-vertex-transitive graph of order n and let $g \in G$. If Γ is not isomorphic to $K_{3,3}$ or a split Praeger-Xu graph SPX(r,s), then at least $\frac{2}{3}n$ vertices are contained in a regular orbit of g.

伺 ト イヨト イヨト

Definition

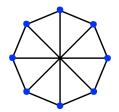
An automorphism g of a graph Γ is said to be semiregular provided that the length of every orbit of g equals o(g) (i.e. every orbit of g is a regular orbit).

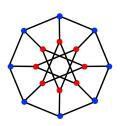
Definition

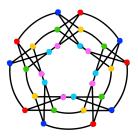
An automorphism g of a graph Γ is said to be semiregular provided that the length of every orbit of g equals o(g) (i.e. every orbit of g is a regular orbit).

Definition

For a positive integer k, we say a graph Γ is a k-multicirculant if $Aut(\Gamma)$ admits a semiregular automorphism g with exactly k orbits.







1-multicirculant

(circulant)

2-multicirculant (bicirculant) 6-multicirculant

Some results involving multicirculant graphs...

- D. Marušič, R. Scapellato, Permutation groups, vertex-transitive digraphs and semiregular automorphism, European J. Combin. 19 (1998), 707–712.
- T. Pisanski, A classification of cubic bicirculants, *Discrete Math.* **307** (2007), 567-578.
- I. Kovács, K. Kutnar, D. Marušič, S. Wilson, Classification of cubic symmetric tricirculants, *Electronic J. Combin.* 19(2) (2012), P24, 14 pages.
- B. Frelih, K. Kutnar, Classification of cubic symmetric tetracirculants and pentacirculants, *European J. Combin.* **34** (2013), 169–194.
- P. Spiga, Semiregular elements in cubic vertex-transitive graphs and the restricted Burnside problem, Math. Proc. Cambridge Phil. Soc. 157 (2014), 45–61.
- M. Giudici, I. Kovács, C.-H. Li, G. Verret, Cubic arc-transitive k-multicirculants, J. Combin. Theory Ser. B 125 (2017), 80–94
- D. Marušič, Semiregular automorphisms in vertex-transitive graphs of order 3p², Electronic J Combin. 25 (2018) P2.25.

-

Conjecture (D. Marušič)

Every vertex-transitive graph admits a non-trivial semiregular automorphism.

★ ∃ ► < ∃ ►</p>

Conjecture (D. Marušič)

Every vertex-transitive graph admits a non-trivial semiregular automorphism.

Theorem (D. Marušič, R. Scapellato, 1998)

Every cubic vertex-transitive graph admits a non-trivial semiregular automorphism.

A B M A B M

Let Γ be a cubic vertex-transitive graph and let $S \subset Aut(\Gamma)$ be the set of non-trivial semiregular automorphisms of Γ . We define

Let Γ be a cubic vertex-transitive graph and let $S \subset Aut(\Gamma)$ be the set of non-trivial semiregular automorphisms of Γ . We define

$$\eta(\Gamma) = \frac{|V(\Gamma)|}{\max\{o(g) \mid g \in Aut(\Gamma)\}}$$

and

Let Γ be a cubic vertex-transitive graph and let $S \subset Aut(\Gamma)$ be the set of non-trivial semiregular automorphisms of Γ . We define

$$\eta(\Gamma) = \frac{|V(\Gamma)|}{\max\{o(g) \mid g \in Aut(\Gamma)\}}$$
$$\kappa(\Gamma) = \frac{|V(\Gamma)|}{\max\{o(g) \mid g \in S\}}$$

Micael Toledo (joint work with P. Potočnik and G. Verret) On the automorphisms of cubic vertex-transitive graphs

Let Γ be a cubic vertex-transitive graph and let $S \subset Aut(\Gamma)$ be the set of non-trivial semiregular automorphisms of Γ . We define

$$\eta(\Gamma) = rac{|V(\Gamma)|}{max\{o(g) \mid g \in Aut(\Gamma)\}}$$

and

 $\kappa(\Gamma) = min\{k \in \mathbb{Z} \mid \Gamma \text{ is a } k\text{-multicirculant}\}$

Let Γ be a cubic *G*-vertex-transitive graph of order *n*. Then $\eta(\Gamma) = 1$ if and only if $\kappa(\Gamma) = 1$

• • = • • = •

Let Γ be a cubic *G*-vertex-transitive graph of order *n*. Then

•
$$\eta(\Gamma) = 1$$
 if and only if $\kappa(\Gamma) = 1$

• if $1 < \eta(\Gamma) \leq 2$ then either

4 3 5 4 3 5

Let Γ be a cubic *G*-vertex-transitive graph of order *n*. Then

- $\eta(\Gamma) = 1$ if and only if $\kappa(\Gamma) = 1$
- if $1 < \eta(\Gamma) \leq 2$ then either
 - Γ is the cube graph and $\eta(\Gamma) = \frac{4}{3}$;
 - Γ is the Petersen graph and $\eta(\Gamma) = \frac{5}{3}$;
 - Γ is the Heawood graph and $\eta(\Gamma) = \frac{7}{4}$;
 - Γ is the Möebius-Kantor graph and $\eta(\Gamma) = \frac{4}{3}$;
 - Γ is the Pappus graph and $\eta(\Gamma) = \frac{3}{2}$.

伺下 イヨト イヨト

Let Γ be a cubic *G*-vertex-transitive graph of order *n*. Then

- $\eta(\Gamma) = 1$ if and only if $\kappa(\Gamma) = 1$
- if $1 < \eta(\Gamma) \leq 2$ then either
 - Γ is the cube graph and $\eta(\Gamma) = \frac{4}{3}$;
 - Γ is the Petersen graph and $\eta(\Gamma) = \frac{5}{3}$;
 - Γ is the Heawood graph and $\eta(\Gamma) = \frac{7}{4}$;
 - Γ is the Möebius-Kantor graph and $\eta(\Gamma) = \frac{4}{3}$;
 - Γ is the Pappus graph and $\eta(\Gamma) = \frac{3}{2}$.
 - Γ admits an automorphism with two orbits of size ⁿ/₂ each, and thus η(Γ) = κ(Γ) = 2

・ 「「」、 ・ 」、 ・ 」、 う

- in particular, if η(Γ) ≤ 2 then κ(Γ) ≤ 2, with the exception of the Pappus graph with κ-value 3.
- What is the value of $\kappa(\Gamma)$ if $2 < \eta(\Gamma) \leq 3$?

Let Γ be a graph.

★ 3 → < 3</p>

Let Γ be a graph.

An arc of Γ is an ordered pair (u, v) where u and v are two adjacent vertices.

Let Γ be a graph.

- An arc of Γ is an ordered pair (u, v) where u and v are two adjacent vertices.
- The initial vertex the arc (u, v) is u.

Let Γ be a graph.

- An arc of Γ is an ordered pair (u, v) where u and v are two adjacent vertices.
- The initial vertex the arc (u, v) is u. The inverse of (u, v) is the arc (v, u).

Let Γ be a graph.

- An arc of Γ is an ordered pair (u, v) where u and v are two adjacent vertices.
- The initial vertex the arc (*u*, *v*) is *u*. The inverse of (*u*, *v*) is the arc (*v*, *u*).
- The group $\operatorname{Aut}(\Gamma)$ acts on the arcs of Γ .

Let Γ be a graph.

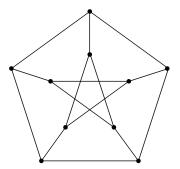
- An arc of Γ is an ordered pair (u, v) where u and v are two adjacent vertices.
- The initial vertex the arc (*u*, *v*) is *u*. The inverse of (*u*, *v*) is the arc (*v*, *u*).
- The group $Aut(\Gamma)$ acts on the arcs of Γ .

Definition

Let Γ be a graph and $G \leq \operatorname{Aut}(\Gamma)$. Let V/G and A/G denote the set of G-orbits on the vertices and the arcs of Γ , respectively.

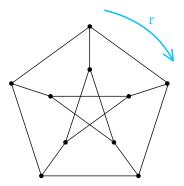
The quotient Γ/G is the multigraph with vertex-set V/G and arc-set A/G where:

- **1** the initial vertex of an arc $(x, y)^G$ is u^G if and only if $x \in u^G$;
- 2 the inverse of an arc (x, y)^G is (u, v)^G if and only if there exists g ∈ G such that v^g = x and u^g = y.



э

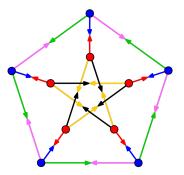
э



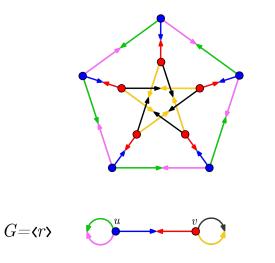
$$G = \langle r \rangle$$

э

э



$$G = \langle r \rangle$$



Micael Toledo (joint work with P. Potočnik and G. Verret) On the automorphisms of cubic vertex-transitive graphs

• E > < E</p>

э

Definition

Let Γ be a cubic *G*-vertex-transitive graph and let $g \in G$. Let $\lambda : V(\Gamma/g) \to \mathbb{Q}$ be given by

$$\lambda(v) = \frac{o(g)}{|v^G|}.$$

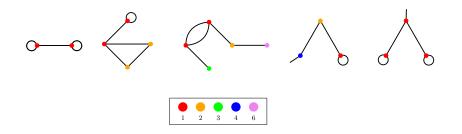
The pair $(\Gamma/g, \lambda)$ is a called labelled quotient.

Observe that:

(Γ/g, λ) is a diagramatic representation of the partition of the vertices an arcs of Γ induced by the action of g;

• if Γ is not isomorphic to $K_{3,3}$, then $Im(\lambda) = \{1, 2, 3, 4, 6\}$.

周 ト イ ヨ ト イ ヨ ト



-

-

э

Quotient graphs

Lemma

Let Γ be a cubic G-vertex-transitive graph of order n and let $g \in G$. If $o(g) \geq \frac{n}{3}$ then $\mu(g) \leq 5$.

Lemma

Let Γ be a cubic G-vertex-transitive graph and let $g\in G.$ Then

- An orbit of size o(g) can only be adjacent to orbits of size $\frac{o(g)}{i}$ for $i \in \{1, 2, 3\}$;
- An orbit of size $\frac{o(g)}{2}$ can only be adjacent to orbits of size o(g) or $\frac{o(g)}{j}$ with $j \in \{1,2\}$;
- An orbit of size $\frac{o(g)}{4}$ can only be adjacent to orbits of size $\frac{o(g)}{j}$ with $j \in \{1, 2\}$;
- An orbit of size $\frac{o(g)}{j}$ with $j \in \{3, 6\}$ is adjacent to exactly one orbit, which has size $3\frac{o(g)}{i}$.

If in addition Γ has more than 20 vertices, then:

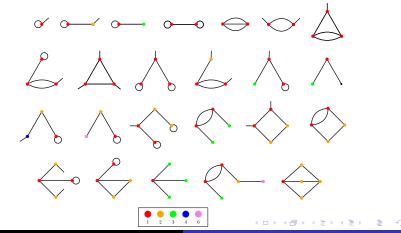
Two orbits of size $\frac{o(g)}{3}$ cannot have a common neighbour;

■ ETC...

Orbit partitions

Theorem

Let Γ be a cubic G-vertex-transitive graph of order n and let $g \in G$ be such that $o(g) \ge n/3$. Then Γ/g is one of the following.

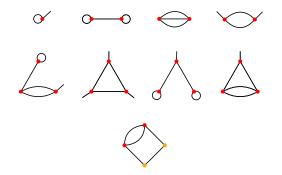


Micael Toledo (joint work with P. Potočnik and G. Verret)

On the automorphisms of cubic vertex-transitive graphs

Theorem

Let Γ be a cubic G-vertex-transitive graph of order n > 20 and let $g \in G$ be such that $o(g) \ge n/3$. Then Γ/g is one of the following.

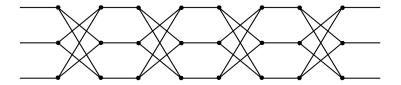


Orbit partitions

Theorem

Let Γ be a cubic G-vertex-transitive graph of order n > 20 and let $g \in G$ be such that $o(g) \ge n/3$. If g has orbit of size o(g)/2 then $\Gamma \cong SDW(r,3)$, where r > 3 is odd.

Moreover, $\kappa(SDW(r,3)) = 6$ if 3 | r and $\kappa(SDW(r,3)) = 2$ otherwise.



• • = • • = •

The functions η and κ

Let Γ be a cubic *G*-vertex-transitive graph of order *n*. Then

- $\eta(\Gamma) = 1$ if and only if $\kappa(\Gamma) = 1$
- if $1 < \eta(\Gamma) \leq 2$ then either
 - Γ is the cube graph and $\eta(\Gamma) = \frac{4}{3}$;
 - Γ is the Petersen graph and $\eta(\Gamma) = \frac{5}{3}$;
 - Γ is the Heawood graph and $\eta(\Gamma) = \frac{7}{4}$;
 - Γ is the Möebius-Kantor graph and $\eta(\Gamma) = \frac{4}{3}$;
 - Γ is the Pappus graph and $\eta(\Gamma) = \frac{3}{2}$.
 - Γ admits an automorphism with two orbits of size ⁿ/₂ each, and thus η(Γ) = κ(Γ) = 2

伺い イラト イラト ニラ

- in particular, if η(Γ) ≤ 2 then κ(Γ) ≤ 2, with the exception of the Pappus graph with κ-value 3.
- What is the value of $\kappa(\Gamma)$ if $2 < \eta(\Gamma) \leq 3$?

The functions η and κ

Let Γ be a cubic *G*-vertex-transitive graph of order *n*. Then

- $\eta(\Gamma) = 1$ if and only if $\kappa(\Gamma) = 1$
- if $1 < \eta(\Gamma) \leq 2$ then either
 - Γ is the cube graph and $\eta(\Gamma) = \frac{4}{3}$;
 - Γ is the Petersen graph and $\eta(\Gamma) = \frac{5}{3}$;
 - Γ is the Heawood graph and $\eta(\Gamma) = \frac{7}{4}$;
 - Γ is the Möebius-Kantor graph and $\eta(\Gamma) = \frac{4}{3}$;
 - Γ is the Pappus graph and $\eta(\Gamma) = \frac{3}{2}$.
 - Γ admits an automorphism with two orbits of size ⁿ/₂ each, and thus η(Γ) = κ(Γ) = 2

・ 「「」、 ・ 」、 ・ 」、 う

- in particular, if η(Γ) ≤ 2 then κ(Γ) ≤ 2, with the exception of the Pappus graph with κ-value 3.
- if $\eta(\Gamma) \leq 3$ then $\kappa(\Gamma) \in \{1, 2, 3, 6\}$.

• Can $\kappa(\Gamma)$ be bounded by a function of $\eta(\Gamma)$?

★ ∃ → ★ ∃

• Can $\kappa(\Gamma)$ be bounded by a function of $\eta(\Gamma)$?

• Let $f: \mathbb{N} \to \mathbb{N}$ be defined by

 $f(r) = \max\{\kappa(\Gamma) : \Gamma \text{ a cubic vertex-transitive graph with } \eta(\Gamma) \leq r\}.$

We know that f(1) = 1, f(2) = 3 and f(3) = 6. Is the function f well-defined? What is its asymptotic behaviour as $n \to \infty$?

• Can $\kappa(\Gamma)$ be bounded by a function of $\eta(\Gamma)$?

• Let $f: \mathbb{N} \to \mathbb{N}$ be defined by

 $f(r) = \max\{\kappa(\Gamma) : \Gamma \text{ a cubic vertex-transitive graph with } \eta(\Gamma) \leq r\}.$

We know that f(1) = 1, f(2) = 3 and f(3) = 6. Is the function f well-defined? What is its asymptotic behaviour as $n \to \infty$?

For a positive integer r, is the number of graphs Γ with $\eta(\Gamma) \leq r$ but $\eta(\Gamma) \notin \mathbb{Z}$ finite?

THANK YOU!

Micael Toledo (joint work with P. Potočnik and G. Verret) On the automorphisms of cubic vertex-transitive graphs

• • = • • =

THANK YOU!

Micael Toledo (joint work with P. Potočnik and G. Verret) On the automorphisms of cubic vertex-transitive graphs

• • = • • =