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We say that Γ is a Cayley graph for B.
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We say that M is a Cayley map for B.

cayley graph 6⇒ an embedding is a cayley map

cayley map ⇒ the underlying graph is cayley
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A regular Cayley map is a Cayley map that is also orientably regular.
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The structure of Aut+(M) for regular Cayley maps
Basic properties Vertex stabiliser Complementary factorisation

In what follows we always assume that M is a regular Cayley map.

The action of Aut+(M) on darts is regular.

The action of Aut+(M) on vertices is faithful and transitive.

|Aut+(M)| = |D(M)| = |V (M)|| deg v |

There is a subgroup B of Aut+(M) regular on the vertices of M.
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B

Let G = Aut+(M), and let B and C be defined as in previous slides, then:

◦ C is cyclic and core-free in G

◦ B ∩ C = {1G}
◦ |B||C | = |V (M)|| deg v | = |G |
◦ G = BC



Part 3: Skew product groups and skew morphisms



Skew product groups and skew morphisms
Skew product groups Skew morphisms from skew generating pairs Going back

A group G is a skew product group for B if there exists C such that:

◦ G = BC

◦ B ∩ C = {1G}
◦ C is cyclic and core-free in G

We say that C is a skew complement (of B in G).

Any pair (B, c) such that c generates a skew complement of B in G is called a
skew generating pair for G .
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Let (B, c) be a skew generating pair of B in G , and let C = 〈c〉. Note that
every g ∈ G is uniquely expressible in a form g = bc ′ with b ∈ B and c ′ ∈ C .

Then for every b ∈ B there exists a unique b′ ∈ B and a unique j ∈ {1, . . . , |C |−
1} such that cb = b′c j .
Let ϕ : B → B be a function defined by ϕ(b) = b′, and let π : B → N be a
function given by π(b) = j .

◦ ϕ is a bijection, and hence a permutation of B

◦ ϕ(1B) = 1B

◦ ϕ(ab) = ϕ(a)ϕπ(a)(b)

cab =

ϕ(a)cπ(a)b = ϕ(a)cπ(a)−1ϕ(b)cπ(b) = ϕ(a)cπ(a)−2ϕ2(b)cπ(b)+π(ϕ(b))

= · · · = ϕ(a)ϕπ(a)(b)c
∑π(a)−1

i=0 π(ϕi (b))
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◦ ϕ(1B) = 1B

◦ for each a ∈ B there exists ia such that ϕ(ab) = ϕ(a)ϕia(b) for all b ∈ B

Note that every automorphism is a skew morphism.
A skew morphism is proper if it is not an automorphism.

Each value ia is unique modulo |〈ϕ〉|.
This gives a function π : B → {1, . . . , |〈ϕ〉| − 1}, the power function of ϕ.
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?

Let ϕ be a skew morphism of B, and identify B with the subgroup of Sym(B).
Then B〈ϕ〉 is a skew product group for B.

Only if some orbit of 〈ϕ〉 is closed under taking inverses and generates B.



Skew product groups and skew morphisms
Skew product groups Skew morphisms from skew generating pairs Going back

Regular Cayley maps for B, skew product groups for B, skew morphisms of B:

skew product groups

skew morphismsskew morphismsregular Cayley maps

skew product groups

skew morphisms
?

Let ϕ be a skew morphism of B, and identify B with the subgroup of Sym(B).
Then B〈ϕ〉 is a skew product group for B.

Only if some orbit of 〈ϕ〉 is closed under taking inverses and generates B.



Skew product groups and skew morphisms
Skew product groups Skew morphisms from skew generating pairs Going back

Regular Cayley maps for B, skew product groups for B, skew morphisms of B:

skew product groups

skew morphismsskew morphismsregular Cayley maps

skew product groups

skew morphisms
??

Let ϕ be a skew morphism of B, and identify B with the subgroup of Sym(B).
Then B〈ϕ〉 is a skew product group for B.

Only if some orbit of 〈ϕ〉 is closed under taking inverses and generates B.



Skew product groups and skew morphisms
Skew product groups Skew morphisms from skew generating pairs Going back

Regular Cayley maps for B, skew product groups for B, skew morphisms of B:

skew product groups

skew morphismsskew morphismsregular Cayley maps

skew product groups

skew morphisms
??

Let ϕ be a skew morphism of B, and identify B with the subgroup of Sym(B).
Then B〈ϕ〉 is a skew product group for B.

Only if some orbit of 〈ϕ〉 is closed under taking inverses and generates B.



Part 4: Example



Example
Skew product group of the cube Skew morphism Cube from a skew morphism
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r = (1, 2, 3, 4)(5, 6, 7, 8), s = (1, 8)(2, 7)(3, 6)(4, 5) and c = (1, 8, 6)(2, 4, 7)

Group G = 〈r , s, c〉 is a skew product group for D4
∼= 〈r , s〉, with a skew

complement C = 〈c〉.
Also (〈r , s〉, c) is a skew generating pair for G .
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r = (1, 2, 3, 4)(5, 6, 7, 8), s = (1, 8)(2, 7)(3, 6)(4, 5), c = (1, 8, 6)(2, 4, 7)

We will compute ϕ(r):

cr =

(1, 8, 6)(2, 4, 7)(1, 2, 3, 4)(5, 6, 7, 8) = (1, 5, 6, 2)(3, 4, 8, 7)

Since (1, 5, 6, 2)(3, 4, 8, 7) = r3sc2, we have ϕ(r) = r3s and π(r) = 2.

We have ϕ = (r , r 3s, r 3)(r 2, s, r 2s), and π(r) = π(r 3s) = π(r 3) = 2.
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Recall that ϕ = (r , r 3s, r 3)(r 2, s, r 2s). The underlying graph of M will be
Cay(D4, {r , r 3s, r 3}), the local clockwise orientation of darts around each
vertex is consistent with ϕ.
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Part 4: What is currently known
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Kovács, Kwon, 2021 B, Conder, Verret, 2021+
Chen, Du, Li, 2021+ Kan, Kovács, Kwon, 2021+
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Kovács, Nedela, 2017 Du, Hu, Lucchini, 2019
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Part 5: Skew morphisms of simple groups



Skew morphisms of simple groups
Core of B in G Monolithic groups Main theorems

The core of B in G is the maximal normal subgroup of G contained in B.

Let G = BC be a skew product group for a (non-abelian) simple group B:

◦ B is normal in G

◦ B is core-free in G

If B is normal in G , then cb = b′c for all b ∈ B, and hence ϕ(b) = cbc−1.

Since B is core-free, G is a permutation group on the coset space (G : B) with
a regular cyclic subgroup C .
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Skew morphisms of simple groups
Core of B in G Monolithic groups Main theorems

A group is monolithic if it has a unique minimal subgroup, and this subgroup
is not abelian.

All non-abelian simple and almost simple groups are monolithic. The smallest
example that is not almost simple is (Alt(5)×Alt(5)) o Z2.

B, Conder, Verret ’21+

Let G be a group with core-free subgroups B and C such that G = BC , where
B is monolithic with monolith A, and C is cyclic. Then G has a unique
minimal normal subgroup N, and this normal subgroup N contains A.

B, Conder, Verret ’21+

Let G be a group with core-free subgroups B and C such that G = BC . If B
is monolithic and C is cyclic, then G is almost simple.
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Skew morphisms of simple groups
Core of B in G Monolithic groups Main theorems

By Li, Praeger, 2012 we have the following:

B, Conder, Verret ’21+

Let G = BC be a skew product group of a monolithic group B. If B is
core-free in G , then one of the following occurs :

(1) G ∼= Alt(n), B ∼= Alt(n − 1) and C ∼= Cn for some odd n ≥ 7,

(2) G ∼= PSL(2, 11), B ∼= Alt(5) and C ∼= C11,

(3) G ∼= M23, B ∼= M22 and C ∼= C23,

(4) G = Sym(n), B = Sym(n − 1) and C = Zn, with n ≥ 6,

(5) G = M11, B = M10 and C = Z11.
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Let G = BC be a skew product group of a monolithic non-abelian simple
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Skew morphisms of simple groups
Core of B in G Monolithic groups Main theorems

B, Conder, Verret ’21+

Groups Alt(5), Alt(6) and M22 admit 240, 1440 and 1774080 proper skew
morphisms while, for even n ≥ 8, Alt(n) admits n! proper skew morphisms. No
other non-abelian simple group admit a proper skew morphism.

B, Conder, Verret ’21+

Every proper skew morphism of a non-abelian finite simple group B gives rise
to a non-balanced regular Cayley map for B. Moreover, every non-balanced
regular Cayley map for a non-abelian finite simple group is one for either
Alt(5) with valency 11, or M22 with valency 23, or Alt(n) with valency n + 1
for some even n ≥ 6.



Part 6: Skew morphisms of (small) cyclic groups



Skew morphisms of cyclic groups
Cyclic core-free subgroups Quotients of skew morphisms Finding skew morphisms

Lucchini ’98

Let C be a cyclic proper subgroup of a group G . If C is core-free in G , then
|C | < |G : C |.

Let G be a skew product group for a cyclic group B:

◦ G = BC

◦ B ∩ C = {1G}
◦ C is cyclic and core-free in G

Then |C | < |G : C | = |B|, and hence |ϕ| < |B|.
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Skew morphisms of cyclic groups
Cyclic core-free subgroups Quotients of skew morphisms Finding skew morphisms

Let B = 〈b〉, and let ϕ be a skew morphism of B.

Let G = BC be the skew product for B induced by ϕ.

Since |C | < |B|, we find that the core K of B in G is non-trivial.
Let be the canonical projection G → G/K .

Then G = B C is a skew product group for C (∼= C).

A quotient of ϕ is the skew morphisms ϕ of C induced by (C , b).
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Skew morphisms of cyclic groups
Cyclic core-free subgroups Quotients of skew morphisms Finding skew morphisms

Previous largest complete list of skew morphisms of cyclic group goes up to
order 60.

ϕ

ϕ

Using quotients we found skew morphisms of all cyclic groups up to order 161.
The list is available at https://drive.google.com/file/d/1vTNXwaCqdaoZjh1MP-5TBbbTQ9Q44fIy

https://drive.google.com/file/d/1vTNXwaCqdaoZjh1MP-5TBbbTQ9Q44fIy
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Some open problems



Let α ∈ Aut(B) and ϕ,ψ ∈ Skew(B), then:

7 ϕψ ∈ Skew(B)

7 ϕα ∈ Skew(B)

3 α−1ϕα ∈ Skew(B)

7 ψ−1ϕψ ∈ Skew(B)

Q: Does there exist a group B which admits a proper skew morphism that is
central in Aut(B)?

Q: Does there exist a skew morphism ϕ of a group B such that B is core-free
in the skew product group induced by ϕ, and ϕ has non-trivial centraliser in
Aut(B)?

Q: Does every non-simple almost simple group admit a proper skew morphism?
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