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Some background

A (Riemannian) manifold M of rank n is a topological space

with the property that each point has a neighbourhood that

is homeomorphic to some open subset of n-dimensional Eu-

clidean space Rn, and accordingly, M can be viewed as the

analogue of a Riemann surface in higher dimension.

The volume of M is a topological invariant that can be cal-

culated using the Riemannian metric ... analogous to the

area of a fundamental region for a Riemann surface.

Much interest is placed on the smallest volume n-manifolds

for particular values of n in various cases: compact, non-

compact, orientable and non-orientable, and so on.



Some background (cont.)

The smallest volume of a compact orientable hyperbolic 2-

manifold is 4π, achievable by any closed hyperbolic surface

of genus 2 (and Euler characteristic −2).

For non-compact orientable 2-manifolds, the smallest vol-

ume is 2π, achieved by a once-punctured torus (with Euler

characteristic −1).

The smallest volume of a compact orientable hyperbolic 3-

manifold is realised uniquely by the Weeks-Matveev-Fomenko

manifold (aka the ‘Weeks manifold’), while the smallest vol-

ume of a non-compact orientable 3-manifold is achieved by

the figure 8 knot complement and a ‘sibling’ of this obtained

by Dehn surgery on the Whitehead link.



The figure 8 knot



What about 4-manifolds?

The volume of every hyperbolic 4-manifold is a constant
multiple of its Euler characteristic: vol(M) = 4π2χ(M)/3,
and in the compact case, this is always even.

It is known that there exist non-compact orientable hyper-
bolic 4-manifolds of minimal Euler characteristic 1, but the
compact case is more challenging. A well-studied example
of a compact orientable hyperbolic 4-manifold was the Davis
manifold (1985), with Euler characteristic 26.

Currently for n = 4 the smallest known volume in the com-
pact case is achieved by a non-orientable example found by
MC & Colin Maclachlan (2005), with Euler characteristic 8.
Its orientable double cover has Euler characteristic 16, and
so both give improvements on the Davis manifold.



Connection with hyperbolic reflection groups

One of the first examples of a compact orientable hyperbolic

3-manifold (the Weber-Seifert manifold) was constructed in

the 1930s from the identification of opposite faces of a do-

decahedron. (There are three ways to do this consistently,

and the other two give the Poincaré homology sphere and

3-dimensional real projective space.)

In the late 1970s, John Milnor took this and the work of

William Thurston further, in a study of hyperbolic volume,

considering hyperbolic 3-manifolds constructible from hyper-

bolic reflection groups Γp,q,r with Coxeter-Dynkin diagram

• • • •
p q r



Dodecahedral face identifications for the homology sphere







In 1992 Peter Lorimer found two further small-volume 3-

manifolds constructible from the [3, 3, 5] and [5, 3, 5] Cox-

eter groups (and tessellated by regular dodecahedra), and

later considered the [4,3,5] case, but he was suffering from

ill health and made an unfortunate big mistake in that work

(which was nevertheless published as a 74-page paper in the

International Journal of Theoretical Physics in 2002).

In 2004 Brent Everitt found all of the orientable spheri-

cal and hyperbolic 3-manifolds that arise by identifying the

faces of a Platonic solid, again using Coxeter groups. This

work partially filled in two of the four incomplete entries in

Milnor’s table, namely the cases [3,5,3] and [5,3,6].



Coxeter groups

The [ k1, k2, ..., kn] Coxeter group is the finitely-presented
group generated by x1, x2, . . . , xn+1 subject to the relations

• x2
i = 1 for 1 ≤ i ≤ n+1,

• (xixi+1)
ki = 1 for 1 ≤ i ≤ n,

• (xixj)
2 = 1 for 1 ≤ i < j ≤ n+1 with |j − i| ≥ 2,

often represented by the Coxeter-Dynkin diagram

• • • • •
k1 k2 kn

Examples:

• Dihedral groups Dk = ⟨x, y | x2, y2, (xy)k ⟩
• Full triangle groups

∆(2, k,m) = ⟨ a, b, c | a2, b2, c2, (ab)k, (bc)m, (ac)2 ⟩.



Construction of manifolds from Coxeter groups

Very briefly, if Λ is a torsion-free subgroup of finite index in

the [ k1, k2, ..., kn] Coxeter group Γ, where n ≥ 3, then an n-

manifold M can be constructed from features of the natural

permutation representation of Γ on the right cosets of Λ,

and then various properties of M (such as its volume) can

be computed from these and the parameters k1, k2, ..., kn.

Example: Torsion-free subgroups of the [3,7] Coxeter group

(which is isomorphic to the full (2,3,7) triangle group) pro-

duce regular maps of type {3,7} on surfaces and algebraic

curves (or compact Riemann surfaces) of genus g > 1 with

automorphism group of largest possible order 168(g − 1).



Torson-free subgroups of Coxeter groups

Geometric theory (involving fixed points of group actions)
shows that every finite subgroup of an infinite [k1, k2, . . . , kn]
string Coxeter group Γk1,k2,...,kn is conjugate to a finite sub-
group of one of the following n+1 subgroups (each of which
is obtained by deleting one of the generators xj ):

• ⟨x1, x2, . . . , xn−1, xn⟩ ∼= Γk1,k2,...,kn−1

• ⟨x1, x2, . . . , xn−1, xn+1⟩ ∼= Γk1,...,kn−2
× C2

• ⟨x1, . . . , xj−1, xj+1, . . . , xn+1⟩ ∼= Γk1,...,kj−2
× Γkj+1,...,kn

for 3 ≤ j ≤ n− 1

• ⟨x1, x3, . . . , xn, xn+1⟩ ∼= C2 × Γk3,...,kn−1,kn

• ⟨x2, x3, . . . , xn, xn+1⟩ ∼= Γk2,...,kn−1,kn.

This gives an iterative process for finding representatives of
conjugacy classes of maximally finite subgroups of Γk1,k2,...,kn.



Important observation

If Λ is a torsion-free subgroup of a group Γ, then in the

right multiplicative permutation representation of Γ on right

cosets of Λ, the orbits of every finite subgroup of Γ must

all be regular (for otherwise some non-trivial element of a

finite subgroup will lie in a conjugate of Λ). Hence if the

index |Γ:Λ| is finite, it must be divisible by the LCM of the

orders of representatives of all finite subgroups of Γ.

[Note: In his study of the [4,3,5] case, Peter Lorimer sadly

made the mistake of claiming that the index should be just

a multiple of 120, but the LCM is 240, and so he found over

200 classes of index 120 subgroups that are not torsion-free.]



Finding torsion-free subgroups of small index

One way is to use the LowIndexSubgroups routine in MAGMA

– e.g. ask for conjugacy classes on subgroups of index 240
in the [4,3,5] Coxeter group, and check among those for the
ones in which the orbits of the finite subgroups are regular.

This can be time-consuming when the index is large.

Another way is to use Peter Dobcsányi’s lowx program,
which skips unwanted branches of the search tree.

Another way is to take a union of regular orbits of the largest
finite subgroup and try to link those together to form a tran-
sitive permutation representation of the whole group.

All three ways can be fruitful, but usually one is better than
the others.



Small volume compact 4-manifolds

In hyperbolic 4-space H4, there are five compact Coxeter

simplices (whose faces are geodesic, with dihedral angles

between faces of co-dimension 1 being submultiples of π).

One of them is associated with the [5,3,3,5] Coxeter group,

and gives rise to the Davis manifold, of characteristic 26,

via a torsion-free subgroup of index 14400.

A study of the other four simplices (by Colin Maclachlan &

MC) showed that a better choice was the [5,3,3,3] group

– for which the associated Coxeter group has a torsion-free

subgroup of index 115200 that gives rise to a non-orientable

compact 4-manifold with Euler characteristic 8.



How did we find it?

If x1, x2, x3, x4, x5 are canonical generators for the [5,3,3,3]
Coxeter group, then consider these finite subgroups:

• ⟨x1, x2, x3, x4⟩ ∼= Γ5,3,3, of order 14400,

• ⟨x1, x2, x3, x5⟩ ∼= Γ5,3 × C2
∼= A5 × C2 × C2, of order 240,

• ⟨x1, x2, x4, x5⟩ ∼= Γ5 × Γ3
∼= D5 ×D3, of order 60,

• ⟨x1, x3, x4, x5⟩ ∼= C2 × Γ3,3
∼= C2 × S4, of order 48,

• ⟨x2, x3, x4, x5⟩ ∼= Γ3,3,3
∼= S5, of order 120.

The index of any torsion-free subgroup is therefore divisible
by LCM(14400,240,60,48,120) = 14400.

We found that the intersection of two ‘almost’ torsion-free
subgroups of index 120 and 960 was a torsion-free subgroup
of index 115200. Question: Is there one of smaller index?



Aside: Recent work with Ruth Kellerhals

In this work, we constructed cusped hyperbolic n-manifolds

for 3 ≤ n ≤ 5 by considering ideal (n − 3)-rectified regular

simplices giving rise to a tesselation of n-dimensional hyper-

bolic space Hn, via torsion-free subgroups of small index in

the Coxeter groups [3,3, ...,3,6] of rank up to 6.

The case n = 3 gives Gieseking’s single-cusped 3-manifold.

When n = 4, we found a torsion-free subgroup Λ of min-

imum index 720 in the arithmetic Coxeter pyramid group

Γ = [∞,3,3,3,6], with quotient space H4/Λ giving a non-

orientable 4-cusped hyperbolic manifold of characteristic 1

commensurable with the orientable manifold of characteris-

tic 1 constructed by Riolo and Slavich in a different way.



For n = 5, we found an orientable 2-cusped manifold that is

closely related to an ideal birectified 6-cell with dihedral an-

gles π/3 and π/2, which can be barycentrically decomposed

into 6! = 720 Coxeter pyramids with symbol [6,3,3,3,3,6].

The fundamental group of this 5-manifold is isomorphic to

a torsion-free subgroup of minimum possible index 2880 in

the [6,3,3,3,3,6] Coxeter group, and has a presentation in

terms of three orientation-preserving isometries, where two

are loxodromic elements of equal translation length, and

the third is parabolic. Also it is not commensurable with

the fundamental group of the small volume non-orientable

5-manifold found by Ratcliffe and Tschantz (22 years ago).



Finally, we return to small volume 3-manifolds obtainable

from Coxeter groups – correcting the work by Peter Lorimer

and completing the study begun by John Milnor.



Manifolds from the [4,3,5] Coxeter group

If x1, x2, x3, x4 are canonical generators for the [4,3,5] Cox-

eter group, then consider these finite subgroups:

• ⟨x1, x2, x3⟩ ∼= [4,3] ∼= ∆(2,4,3) ∼= S4 × C2, of order 48,

• ⟨x1, x2, x4⟩ ∼= ⟨x1, x2⟩ × ⟨x4⟩ ∼= D4 × C2, of order 16,

• ⟨x1, x3, x4⟩ ∼= ⟨x1⟩ × ⟨x3, x4⟩ ∼= C2 ×D5, of order 20,

• ⟨x2, x3, x4⟩ ∼= [3,5] ∼= ∆(2,3,5) ∼= A5 × C2, of order 120.

The index of any torsion-free subgroup is therefore divisible

by LCM(48,16,20,120) = 240.

PhD student Gina Liversidge and MC carried out two com-

putations (over 4 days) that revealed exactly 14 conjugacy

classes of torsion-free subgroups of index 240 in the [4,3,5]

Coxeter group – and up to 14 new dodecahedral spaces.



What kind of computations?

• Use of the LowIndexSubgroups routine in MAGMA works,

but takes over two months!

• Peter Dobcsányi’s lowx program takes much less time

• Another quick and successful approach involved starting

with two regular permutation representations of the [3,5]

Coxeter group (isomorphic to A5 × C2, of order 120), and

then finding all ways of joining these together to form a

suitable transitive permutation representation of the [4,3,5]

Coxeter group of degree 240.



Manifolds from the [6,3,6] Coxeter group

If x1, x2, x3, x4 are canonical generators for the [6,3,6] Cox-
eter group, then the subgroups ⟨x1, x2, x3⟩ and ⟨x2, x3, x4⟩
are isomorphic to the full (2,3,6) triangle group, and hence
are infinite, so we consider (only) these finite subgroups:

• ⟨x1, x2, x4⟩ ∼= D6 × C2, of order 24,

• ⟨x1, x3, x4⟩ ∼= C2 ×D6, of order 24,

• ⟨x2, x3⟩ ∼= D3, of order 6.

Note: Each of the finite 2-generator subgroups ⟨xi, xj⟩ is
contained in at least one of these. The index of any torsion-
free subgroup is therefore divisible by LCM(24,6) = 24.

An easy computation shows there are 12 conjugacy classes
of torsion-free subgroups of index 24 in the [6,3,6] Coxeter
group – and up to 12 associated hyperbolic 3-manifolds.



Outcome

The last two pieces of work (done in 2022) fill the remaining
two gaps in Milnor’s table.

In fact, we can now go further and find all the 3-manifolds
of Coxeter type [p, q, r] with minimum volume (with regard
to the type), when p, q, r ≥ 3 and both [p, q] and [q, r] are
spherical or Euclidean – that is, with 1/2 + 1/p + 1/q ≥ 1
and 1/2+ 1/q +1/r ≥ 1.

This extends and completes the work by Weber & Seifert,
Milnor, Lorimer and Everitt.

A summary table (up to duality) follows. In the first four
cases, the Coxeter group is finite, and the manifold is unique,
while in the remaining eleven cases, the first homology group
of each of the manifolds is known as well.



Type Minimum |Γ:Λ| # of TF subgroup classes

[3,3,3] 120 1 (the 4-simplex)
[3,3,4] 384 1 (the 16-cell)
[3,3,5] 14400 1 (the 600-cell)
[3,4,3] 1152 1 (the 24-cell)

[4,3,4] 48 18

[3,3,6] 24 1 (the Gieseking manifold)
[3,4,4] 48 13
[3,5,3] 120 7
[3,6,3] 12 2
[4,3,5] 240 14
[4,3,6] 48 11
[4,4,4] 16 12
[5,3,5] 120 12 (one is Weber-Seifert)
[5,3,6] 120 77
[6,3,6] 24 12



Final notes

• In each case, compactness of a manifold is determined

entirely by the triple (p, q, r) . . . or more specifically in most

cases, by compactness of the associated Coxeter simplex.

• All of the spherical and Euclidean manifolds we found are

compact, while the hyperbolic manifolds are compact only

for the triples (4,3,5), (3,5,3) and (5,3,5).

• Isomorphisms among the resulting 3-manifolds are yet to

be determined.



Thanks for listening!



Abstract

It is well known that various hyperbolic manifolds of small

volume can be constructed using torsion-free subgroups of

minimum possible index in certain string Coxeter groups.

Examples include the 600-cell and the Weber-Seifert and

Gieseking manifolds, obtainable from the [3,3,5], [5,3,5]

and [3,3,6] Coxeter groups. Constructions for certain 3-

manifolds were developed in some notes by Milnor in the

late 1970s on computing volumes, and in papers by Lorimer

(1992) and Everitt (2004) using the identification of faces

of a Platonic solid, and Colin Maclachlan and the speaker

took a different approach (in 2005) to find the compact 4-

manifold of currently smallest known volume, via subgroups



of the [3,3,3,5] Coxeter group. Milnor’s notes did not com-

pletely resolve some cases for hyperbolic 3-manifolds, and

a subsequent paper by Lorimer (2002) unsuccessfully at-

tempted to deal with the case of the [4,3,5] Coxeter group.

We complete and extend these pieces of work by deter-

mining all of the small volume 3-manifolds constructible

from torsion-free subgroups of minimum possible index in

the [p, q, r] Coxeter groups for which p, q, r ≥ 3 and each of

the pairs (p, q) and (q, r) is spherical or Euclidean (that is,

with 1/p+1/q ≥ 1 and 1/q +1/r ≥ 1). This is quite recent

joint work with PhD student Georgina Liversidge.


