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Orientably-regular maps

A map is an embedding of a connected graph or multigraph

on a closed surface, breaking it up into simply-connected

regions called the faces of the map.

A map M on an orientable surface is orientably-regular if

the group of all of its orientation-preserving automorphisms

is transitive on the arcs (incident vertex-edge pairs) of M .

In that case, every vertex has the same degree/valency k

and every face of the map has the same size m, and we call

{m, k} the type of the map.

Orientably-regular maps are sometimes just called ‘regular’.

Those that admit also orientation-reversing automorphisms

are ‘reflexible’, while the remaining ones are ‘chiral’.



The Platonic solids give rise to reflexible maps on the sphere

— with types {3,3}, {3,5}, {5,3}, {3,4} and {4,3}:

Regular maps on the torus (genus 1) have types {3,6}, {4,4}
and {6,3}, and infinitely many of these maps are reflexible,

while infinitely many are chiral.



Two chiral maps of type {6,3} on the torus

These maps are chiral, and mirror images of each other

(and their duals are orientably-regular embeddings of K7)



Regular maps of hyperbolic type

If M is an orientably-regular map of type {m, k} on a surface
of genus g > 1, with |V | vertices, |E| edges and |F | faces,
and orientation-preserving automorphism group G, then by
arc-transitivity and 2-edge-connectivity(*), we have

|G| = |AutoM | = k|V | = 2|E| = m|F |

and so by the Euler-Poincaré formula, we have

2− 2g = χ = |V | − |E|+ |F | = |G| (1
k −

1
2 + 1

m).

As the LHS is < 0, this requires 1
k + 1

m < 1
2, or equivalently,

• k = 3 and m ≥ 7, or (dually) m = 3 and k ≥ 7,

• k = 4 and m ≥ 5, or (dually) m = 4 and k ≥ 5,

• m ≥ k ≥ 5, or (dually) k ≥ m ≥ 5.

In these cases the map M is said to have hyperbolic type.



Digression: 2-edge-connectivity of VT graphs

The identity 2|E| = m|F | on the previous slide may result
from counting the number of incident edge-face pairs in two
different ways: on one hand, each face has m edges, but on
the other hand, why does every edge lie in 2 faces?

This is frequently assumed, but seldom proved!

[Note after talk: Steve Wilson pointed out that we can get
around this by counting in a different way! If we trace the
edges around each face, then every edge is counted twice.]

Can you prove that every edge lie in exactly two faces?

Better still, can you prove that if X is any connected finite
vertex-transitive graph other than K2, then no edge of X is
a ‘bridge’, and hence X is 2-edge-connected?



What follows is one of at least three different short proofs.

(This one results from a recent brief email discussion with

Brian Alspach, whose 1994 Masters student Tai-Yu Chen (at

Simon Fraser University) proved something stronger, namely

that if the connected simple graph X is vertex-transitive,

then X is k-edge-connected if and only if X has valency k.)



Proof. Assume the contrary, and let e = {u, v} be a bridge.

Then removal of e leaves two connected components, say A
and B, containing u and v respectively, and without loss of
generality, we may suppose that |A| ≥ |B|.
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Now because X has valency at least 2, we know |B| ≥ 2, and
so B contains another vertex w. Then by vertex-transitivity
w is incident with a bridge edge whose removal from X

leaves two components of sizes |A| and |B|. But clearly one
of those components contains A ∪ {v}, so its size is greater
than both |A| and |B| ... contradiction. �



Connection with triangle groups

If M is an orientably-regular map of type {m, k}, and (v, e, f)

is any incident vertex-edge-face triple, then there exist two

orientation-preserving automorphisms R and S such that

• R acts locally like a single-step rotation of the face f ,

• S acts locally like a single-step rotation around vertex v,

• RS acts locally like a 180-degree rotation of the edge e.

By connectedness, and the fact that any orientation-preserving

automorphism is uniquely determined by its effect on any

arc, it follows that R and S generate Aut o(M) and satisfy the

∆(2, k,m) triangle group relations Rm = Sk = (RS)2 = 1.

Conversely, every such map M of type {m, k} can be con-

structed algebraically from elements R and S of orders m

and k generating a finite group G such that RS has order 2.



Orientably-regular maps of given type

Spherical type: If the map has genus 0, then 1
k−

1
2 + 1

m > 0,

so k = 2 or m = 2 or {m, k} = {3,3}, {3,5}, {5,3}, {3,4}
or {4,3}, and all possibilities are achievable, by ‘equatorial’

maps, ‘polar maps’, and the ‘Platonic’ maps on the sphere.

Euclidean type: If the map has genus 1, then 1
k−

1
2 + 1

m = 0,

so {m, k} = {3,6}, {4,4} or {6,3}, and all possibilities are

achievable, by uniform triangulations, quadrangulations and

‘honeycombs’ of the torus.

For the rest of this talk, we’ll focus on hyperbolic type,

with 1
k −

1
2 + 1

m < 0.



Some early history

Murray Macbeath (1969) used a 2×2 matrix construction
and trace argument to show that for every pair (m, k) of
positive integers s.t. 1/k + 1/m < 1/2, there are infinitely
many primes p for which the group PSL(2, p) is a ‘smooth’
quotient of the ∆(2, k,m) triangle group.

(Note: ‘Smooth’ means that the orders 2, k and m of the
relevant elements of ∆(2, k,m) are preserved. The proof
finds suitable elements of SL(2, p) that cannot generate a
proper subgroup, and then projects those to PSL(2, p).)

All of the resulting maps are reflexible [Singerman (1974)]
and hence fully regular, and so Macbeath’s theorem proves
the following:

For every hyperbolic pair {m, k}, there exist infinitely
many fully regular orientable maps of type {m, k}.



A further construction: the ‘Macbeath trick’

Let G = 〈R,S〉 be the rotation group of an orientably-regular

map M of hyperbolic type {m, k}, and genus g ≥ 2.

Then there exists a homomorphism from ∆(2, k,m) onto G,

the kernel K of which is torsion-free and isomorphic to the

fundamental group of the carrier surface of M. In particular,

K is generated by 2g elements a1, b1, a2, b2, . . . , ag, bg subject

to the single defining relation [a1, b1][a2, b2] . . . [ag, bg] = 1.

Now for any positive integer s, the subgroup Ls = K′K(s) of

K generated by all commutators [x, y] and the sth powers

xs of all elements of K is characteristic in K, and therefore

normal in ∆(2, k,m), with K/Ln
∼= (Zs)2g, and hence we get

infinitely many new quotients ∆(2, k,m)/Ls and infinitely

many ‘covering’ maps of M , all of the same type {m, k}.



Note: A related method was used by Biggs and Conway

and (independently) Djoković in order to construct infinitely

many connected finite 5-arc-transitive 3-valent graphs from

a given example.



Coset graph constructions

A (Schreier) coset graph is a graph that depicts the effect of

a finitely-generated permutation group G on a set X. The

vertices are the points of X, and for every generator g of G,

an arc labelled g joins each vertex x to its image xg under g.

When the action is transitive, this is equivalent to the graph

whose vertices are the right cosets Hx in G of a point-

stabiliser H, with an arc labelled g joining each vertex Hx

to its image Hxg under right multiplication by g.

(Also some people working on abstract polytopes recently

have called a special case of this a ‘C-group permutation

representation graph’ (or ‘CPR’ graph), but it’s really the

same thing and so doesn’t need a new term.)



Example

Below is a coset graph for an action of the (2,3,7) triangle

group ∆ = 〈x, y, z | x2 = y3 = z7 = xyz = 1 〉 on 7 points:
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x 7→ (3,4)(6,7)

y 7→ (1,2,3)(4,5,6)

z 7→ (1,4,7,6,5,3,2)
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This gives a homomorphism from ∆ to Aut o(M) ∼= PSL(2,7)

taking (x, y, z) 7→ (RS,R, S), for Klein’s quartic map M of

type {3,7} and genus 3.



Composition of coset graphs [Graham Higman/MC]

Sometimes two coset graphs for the same group G on (say)
n1 and n2 points can be composed to produce a transitive
permutation representation of larger degree n1 + n2

– e.g.
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This lets us string together multiple copies of coset graphs:
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We can often use this method to do all sorts of things, such
as prove that certain finitely-presented groups are infinite.

If suitable graphs A and B have a points and b points, then
we string together p copies of A and q copies of B and get
a new one on n = pa + qb points, and if gcd(a, b) = 1, then
n = pa+ qb can be any sufficiently large positive integer.

Then add a single copy of an extra graph C (with c points)
to disturb the cycle structure of particular elements, and
make the permutations from the new graph generate the
alternating group An+c or the symmetric group Sn+c.



Example

For ∆(2,3,7) we could take this 42-point coset graph as A:

and a 113-point coset graph as B, and so on ...



Theorem [MC (doctoral thesis), 1980]

(a) For every k ≥ 7, all but finitely many alternating groups
An occur as smooth quotients of ∆(2,3, k)

(b) For every even k ≥ 8, all but finitely many symmetric
groups Sn occur as smooth quotients of ∆(2,3, k).

For each k ≥ 7 this gives orientably-regular maps of types
{3, k} and {k,3} with rotation group An for all but finitely
many n, and others with rotation group Sn for all but finitely
many n when k is even.

Moreover, the proofs of (a) and (b) make almost all of
the above maps reflexible, and also produce non-orientable
regular maps of each type with full automorphism group An
for all but finitely many n, and others for each type with full
automorphism group Sn when k is even.



Theorem [Brent Everitt, 2000]

If F is a finitely-generated, non-elementary Fuchsian group

(that is, a universal group for conformal group actions on

compact Riemann surfaces of genus g > 1), then all but

finitely many alternating groups An occur as quotients of F.

Note: those quotients are not claimed to be ‘smooth’ ...

Corollary [proved in steps by BE & some others (1990s)]

For every hyperbolic pair {m, k}, all but finitely many alter-

nating groups An occur as the rotation group of an orientable-

regular map of type {m′, k′} for some m′ and k′ dividing m

and k respectively.



What about chiral maps?

This question was asked by David Singerman in 1992.

Some answers have arisen more recently.



Theorem [Emilio Bujalance, MC & Antonio Costa (2010)]

For every k ≥ 7, all but finitely many alternating groups

An are the automorphism group of an orientably-regular but

chiral map of type {3, k}.

This was proved as part of the construction of infinitely

many ‘pseudo-real’ surfaces with automorphism group of

largest possible order, namely 12(g−1) where g is the genus.

The proof used coset graphs as earlier, but composed with

a single copy of one extra graph that breaks reflectional

symmetry.



For example, in the (2,3,7) case, we can adjoin an irreflexible

7-point coset graph as follows:
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The same kind of construction also shows the following:

For every even k ≥ 8, all but finitely many symmetric groups

Sn occur as the automorphism group of an orientably-regular

but chiral map of type {3, k}.



An important recent theorem (2016):

For every hyperbolic pair (k,m), there exist infinitely many

orientably-regular but chiral maps of type {m, k}.

One ‘base’ example for each type can be found by using

• permutation representations of the group ∆(2, k,m)

[MC, Veronika Hućıková, Roman Nedela & Jozef Širáň],

or

• group representations and the theory of differentials

on Riemann surfaces [Gareth Jones].

Indeed in the former case, a base example can be found with

an alternating or symmetric group as automorphism group.

Then infinitely many of each such type can be found using

the ‘Macbeath trick’ to construct covers.



Easy Corollary:

For every given integer k ≥ 3, there exist infinitely many
orientably-regular but chiral maps with valency k.

Proof. This holds for such maps of type {m, k} for some m

(indeed for infinitely many m).

Stronger version:

For every given integer k ≥ 3, all but finitely many alter-
nating groups An occur as the automorphism group of an
orientably-regular but chiral map with valency k.

Proof. We know that all but finitely many An occur for
chiral maps of type {7,3} or type {3, k} for any given k ≥ 7,
and then valency k ∈ {4,5,6} can be dealt with using the
same approach with the groups ∆(2,4,5) and ∆(2,6,6).



Similarly:

For every given integer k ≥ 3, all but finitely many symmetric

groups Sn occur as the automorphism group of an orientably-

regular but chiral map with valency k.

Proof. First, we know that all but finitely many Sn occur

for chiral maps of type {8,3} or {3, k} for any even k ≥ 8.

Next, valency k ∈ {4,5,6} can be dealt with using the same

approach with ∆(2,4,5) and ∆(2,6,6).

Finally, for odd k ≥ 7 we can adapt the construction for

irreflexible alternating quotients of ∆(2,3, k) into one that

produces irreflexible symmetric quotients of ∆(2,12, k), by

using 4-cycles in place of 3-cycles in a few places, and hence

obtain chiral maps of type {12, k} with Sn as automorphism

group for all but finitely many n.



Challenge question:

Is it true that for every hyperbolic pair (k,m), all but finitely

many alternating groups occur as the full automorphism group

of an orientably-regular but chiral map of type {m, k}?

And finally ...



A long-standing important question:

Among orientably-regular maps on hyperbolic surfaces, how

prevalent are the chiral ones?

Specifically, for every integer g > 1, let no(g) be the num-

ber of non-isomorphic orientably-regular maps on orientable

surfaces of genus 2 to g, and let nr(g) and nc(g) be the

numbers of those that are reflexible or chiral, respectively.

For 2 ≤ g ≤ 300, the ratios nr(g)/no(g) and nc(g)/no(g) are

greater than 1/2 and less than 1/2, but the latter increases

while the former decreases.

What happens to nr(g)/no(g) and nc(g)/no(g) as g →∞?
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Abstract:

A map is 2-cell embedding of a connected graph in a closed
surface, breaking up the surface to simply-connected regions
called faces. The map is called ‘regular’ if its automorphism
group has a single orbit on flags (which are like incident
vertex-edge-face triples), or ‘orientably-regular’ if the sur-
face is orientable and the automorphism group of the map
has a single orbit on arcs (incident vertex-edge pairs). If a
map of the latter kind admits no reflections (e.g. fixing an
arc but swapping the two faces incident with it), then the
map is called ‘chiral’. In all such maps with a high degree



of symmetry, all vertices have the same valency, say k, and

all faces have the same size, say m, and then we call the

ordered pair {m, k} the ‘type’ of the map.

Writing a section of a forthcoming book on such maps (with

Gareth Jones, Jozef Siran and Tom Tucker) has prompted

me to review and extend what is known about regular and

chiral maps with given valency k, or with given type {m, k},
including what happens in the special case where the auto-

morphism group is isomorphic to an alternating or symmetric

group. I will summarise findings in this talk.


