Configurations of Points and Lines

Leah Wrenn Berman University of Alaska Fairbanks Fairbanks, Alaska, USA March 16, 2021

Algebraic Graph Theory International Webinar

What is a (p_q, n_k) configuration?

- p points
- n lines
- q points on each line

k lines through each point
 Pappus Configuration: (9₃, 9₃) configuration, (9₃) configuration 3-configuration
 Balanced configuration

What is a (p_q, n_k) configuration?

- p points
- n lines
- q points on each line
- k lines through each point

(28₃, 21₄) configuration (3,4)-configuration

Unbalanced configuration

Where to find more examples?

Reye Configuration

Kinds of configurations

(7₃) Fano Configuration

Kinds of configurations

Topological

"Lines" can curve, but they can't intersect twice

(22₄) topological configuration

Kinds of configurations

(48₅) geometric configuration

Questions about configurations

• Existence: are there any....?

•Identification: can we find some...?

• Classification: what features...?

• Application: how can we use...?

Existence: For which *n* do there exist (nk) configurations? For a fixed *n*, how many are there?

Combinatorial Configurations and Graphs

Configuration

Combinatorial Configurations and Graphs

graph with 2nvertices, bipartite, *k*-regular, girth ≥ 6

Combinatorial Configurations (n_k)

(n₃): $n \ge 7$ (n₄): $n \ge 13$ (n_k): $n \ge k(k-1)+1$

Minimal: finite projective planes of order *k*-1...or *(k,6)-cages* in general

Smallest combinatorial (n_k) configuration?

k	smallest	FPP?	
3	(73)	yes	
4	(134)	yes	
5	(215)	yes	
6	(31 ₆)	yes	
7	(457)	no!	
8	(57 ₈)	yes	
9	(739)	yes	
10	(91 ₁₀)	yes	
11	112 ≤ <i>n</i> ≤ 120	no	
12	(13312)	yes	
13	157≤ <i>n</i> ≤ 168	no	

Combinatorial (n_k) configurations

- Some are easy to find: cyclic configurations
 - k=3: Cyc_n[0, 1, 3]
 - k=4: Cyc_n[0,1, 3, 6]
 - k=5: Cyc_n[0, 1, 4, 14, 16]

Open Question: what can we say about geometric embedding of cyclic 4-configurations?

Α	В	С	D	Ε	F	G	Н	
0	1	2	3	4	5	6	7	8
1	2	3	4	5	6	7	8	0
3	4	5	6	7	8	0	1	2

Existence of 3-configurations

Combinatorial 3-configurations

- Exist for all $n \ge 7$
- Enumerated for 7≤ n ≤ 19
 (Gropp 1990, Betten & Betten 1999, Betten, Brinkmann, Pisanski 2000)
- combinatorial 3-configurations
 ↔ cubic bipartite graphs of
 girth at least 6: Levi Graphs

Topological 3-configurations

- Exist for all $n \ge 9$
- Easy to construct:
 - Steinitz (1894) Every (n₃) can be realized with at most one curve, but might have extra incidences...
- Avoid with pseudolines!

Geometric 3-configurations

- none for n=7,8; at least one (cyclic) for all $n\ge 9$
- $#(9_3) = 3$, including Pappus & Cyc₉(0,1,3)
- #(10₃) = 9, including Desargues; one combinatorial (10₃) configuration is non-realizable!
- Daublebsky [1894]: #(11₃) = 31, #(12₃)=228*
 - *no, 229 (missed one, overcounted one!) (Gropp 1997)
- All realizable with rational points! (Sturmfels & White 2000)

4-configurations

Combinatorial 4-configurations

- Completely enumerated for $13 \le n \le 19$
 - n = 13 ...,18: Betten & Betten 1999
 - n = 19: San Augustín Chi & Páez Osuna 2012
- At least one exists for all *n* (e.g., cyclic)

n	# combinatorial (n4)		
13	1		
14	1		
15	4		
16	19		
17	1972		
18	971 171		
19	269 224 652		

Combinatorial Explosion!

Topological 4-configurations

- none for 13 ≤ n ≤ 16
 (Bokowski & Schewe
 2005)
- n = 15, 16 hard: oriented matroids!
- exist for n ≥ 17
 (Bokowski, Grünbaum, Schewe 2009)

Topological (17₄) (non-stretchable)

Geometric 4-configurations

- None for $n \leq 17$ (Bokowski & Schewe 2005)
- Exactly two for n = 18 (Bokowski & Schewe 2009; Bokowski & Pilaud 2011)
- None for n = 19 (Bokowski & Pilaud 2012)
- <u>At least one</u> for all other *n* except...
 - **Unknown** for n = 23
- Recently closed: n = 19, 37, 41, 43 (Bokowski & Pilaud), 22, 26 (Cuntz 2018)

(n_k) configurations for n > 4?

Known lower bounds

(n _k)	combinatorial	topological	geometric	
(n ₃)	(73)	(93)	(93)	
(n4)	(134)	(174)	(184)	
(n ₅)	(215)	n ≥ 27*; <mark>(36</mark> 5)	(485)	
(n ₆)	(31 ₆)	n≥42*; <mark>(88</mark> 6)	(96 ₆)	
(N7)	(457)	n≥57*	(2887)**	
(n ₈)	(57 ₈)	n≥75*	(5258)***	

*(Bokowski personal communication, 2016) (Smallest I know)

A(9; 5,5; 1,2,3,4,6) B. & J. Faudree 2013; *multicelestial 15#(3,2,1);(7,6,5,4)

We don't know very much about lower bounds!

B. 2014

Theorem: Geometric (n_k) configurations exist for all large enough n !

For each $k \ge 2$ there exists N_k so that for $n \ge N_k$, there exists at least one (n_k) configuration.

(B., Gévay, Pisanski, in review)

k	$N_k \leq \dots$	k	$N_k \leq \dots$	
4	24	8	1333584	
5	576	9	19353600	
6	7350	10	287400960	
7	96768	11	3832012800	

Identification: How can we find new (infinite classes of) configurations?

Symmetry

- Non-trivial geometric symmetry: rotations and reflections
- Symmetry classes? *k*-astral.
- "small" number of symmetry classes
 - symmetric vs. balanced

Symmetry helps find examples!

Main Tools

- Reduced Levi Graph:
 represent families of configurations compactly
- Geometric Lemmas

6

8

Levi Graphs

Reduced Levi Graphs

Infinite Families of Configurations

Infinite Families of Configurations

 $\prod \operatorname{Cos}(s_i \pi/m) = \prod \operatorname{Cos}(t_i \pi/m)$

∑(s_i - t_i) is even

Combine for new examples!

Smallest known 5-configuration: (48₅)

Combine for new examples!

Smallest known 6-configuration: (96₆)

Important open question

Given a reduced Levi graph, can we find a corresponding geometric configuration?

Techniques for 3-configurations...wide open in general!

Classification: Given an infinite class of (geometric) configurations, how are the elements related?

Configuration Isomorphism

2	6	5	4	6	4	5	5	8
3	8	7	7	9	8	9	6	9

Configuration Isomorphism

Not isomorphic!

Isomorphism Question

Isomorphism Question

Isomorphism Question

- Which infinite families of configurations have isomorphic members?
- (Levi) graph isomorphism problem is hard
 - Determining isomorphism via Reduced Levi Graph?
- Isomorphism relationships within/across known infinite families?
- Combinatorial properties of classes of geometric configurations?

Application: How can we use configurations to answer other questions?

Configurations and Cages

Tutte-Coxeter cage (8,3)-cage

(15₃) Cremona-Richmond

Configurations and Cages

(Triangle and quadrangle-free)

(Both images from Pisanski et al., 2004)

Conjecture: All (3,g)-cages where g is an even integer are bipartite graphs (*Pisanski et al, 2004*)

Can we use (symmetric, polycyclic) configurations to find small bipartite graphs with large girth?

5-cycle double-cover conjecture

Cover every bridgeless cubic graph with 5 even subgraphs so that each edge is in exactly two of the cycles

(Kral et al, 2009)

Fulkerson conjecture

Every bridgeless cubic graph has 6 perfect matchings so that each edge is in two matchings

Edge-color with the Cremona-Richmond Configuration (Kral, et al 2009)

Advertisement: Graduate students!

www.uaf.edu/dms

 Mathematical biology, computational algebra, algebraic statistics. Nonharmonic Fourier series, partial differential equations, control theory, inverse problems. Applied mathematics, numerical analysis, analysis on manifolds. Combinatorics; graph theory. Graph theory; combinatorics; order. Partial differential equations, geometric analysis, mathematical physics. Mathematical biology, algebraic statistics. Operator theory, complex analysis, math physics. Discrete geometry, especially abstract polytopes, convex

polytopes and tilings

