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What is a (pq, nk) configuration?

• p points


• n lines


•q points on each line


•k lines through each 
point

Pappus Configuration:  
(93, 93) configuration, (93) configuration 

3-configuration
Balanced configuration





What is a (pq, nk) configuration?

(283, 214) configuration
(3,4)-configuration

• p points


• n lines


•q points on each line


•k lines through each 
point

Unbalanced configuration



Where to find more examples?



Reye Configuration

(124,163) 
configuration



Desargues’ Theorem

A (103) 
configuration!



Kinds of configurations

Combinatorial
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(73) Fano Configuration

“Lines” are 
collections of 

points

Each number is 
in 3 columns



Kinds of configurations
Topological

“Lines” can 
curve, but they 
can’t intersect 

twice 

(224) topological 
configuration



Kinds of configurations

Geometric

“Lines” 
are Actual 
Straight 
Lines!

(485) geometric 
configuration



Questions about configurations

•Existence: are there any….?


• Identification: can we find some…?


•Classification: what features…? 

•Application: how can we use…?



Existence: 
For which n do there 

exist (nk) configurations? 
For a fixed n, how many 

are there?



Combinatorial Configurations and Graphs
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Configuration Incidence (“Levi”) Graph



Combinatorial Configurations and Graphs

combinatorial 
(nk) 

configuration

graph with 2n 
vertices, bipartite, 
k-regular, girth≥6 



Combinatorial Configurations (nk)

(n3): n ≥ 7

(n4): n ≥ 13

Minimal: finite projective 
planes of order k-1…or  
(k,6)-cages in general

(nk): n ≥ k(k-1)+1



Smallest combinatorial (nk) configuration?
k smallest FPP?
3 (73) yes
4 (134) yes
5 (215) yes
6 (316) yes
7 (457) no!
8 (578) yes
9 (739) yes

10 (9110) yes
11 112 ≤ n ≤ 120 no
12 (13312) yes
13 157≤ n ≤ 168 no



Combinatorial (nk) configurations

• Some are easy to find: 
cyclic configurations


• k=3: Cycn[0, 1, 3]


• k=4: Cycn[0,1, 3, 6]


• k=5: Cycn[0, 1, 4, 14, 16] 

A B C D E F G H I
0 1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8 0
3 4 5 6 7 8 0 1 2
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Open Question: what can we say 
about geometric embedding of 

cyclic 4-configurations?



Existence of 3-configurations



Combinatorial 3-configurations

• Exist for all n ≥ 7 

• Enumerated for 7≤ n ≤ 19 
(Gropp 1990, Betten & Betten 1999,  Betten, 

Brinkmann, Pisanski 2000)


• combinatorial 3-configurations 
⟷ cubic bipartite graphs of 
girth at least 6: Levi Graphs
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Topological 3-configurations

• Exist for all n ≥ 9


• Easy to construct:


•  Steinitz (1894) Every 
(n3) can be realized 
with at most one 
curve, but might have 
extra incidences… 

• Avoid with pseudolines!



Geometric 3-configurations

• none for n=7,8; at least one (cyclic) for all n≥9


• #(93) = 3, including Pappus & Cyc9(0,1,3)


• #(103) = 9, including Desargues; one combinatorial (103) 
configuration is non-realizable!


• Daublebsky [1894]: #(113) = 31, #(123)=228*


• *no, 229 (missed one, overcounted one!) (Gropp 1997)


• All realizable with rational points! (Sturmfels & White 2000)



4-configurations



Combinatorial 4-configurations

• Completely enumerated for 13 ≤ n ≤19 


• n = 13 …,18: Betten & Betten 1999


• n = 19: San Augustín Chi & Páez Osuna 2012


• At least one exists for all n (e.g., cyclic)



n # combinatorial (n4)
13 1
14 1
15 4
16 19
17 1972
18 971  171
19 269  224  652

Combinatorial Explosion!



Topological 4-configurations

• none for 13 ≤ n ≤ 16 
(Bokowski & Schewe 
2005)


• n = 15, 16 hard: 
oriented matroids!


• exist for n ≥ 17 
(Bokowski, Grünbaum, 
Schewe 2009)


Topological (174)  
(non-stretchable)



Geometric 4-configurations

• None for n ≤ 17 (Bokowski & Schewe 2005)


• Exactly two for n = 18 (Bokowski & Schewe 2009; 
Bokowski & Pilaud 2011) 

• None for n = 19 (Bokowski & Pilaud 2012)


• At least one for all other n except...


• Unknown for n = 23


• Recently closed: n = 19, 37, 41, 43 (Bokowski & Pilaud), 
22, 26 (Cuntz 2018)



(nk) configurations for n > 4?



Known lower bounds

(nk) combinatorial topological geometric
(n3) (73) (93) (93)
(n4) (134) (174) (184)
(n5) (215) n ≥ 27*; (365) (485)
(n6) (316) n≥42*; (886) (966)
(n7) (457) n≥57* (2887)**
(n8) (578) n≥75* (5258)***

We don’t know very much about lower bounds!

*(Bokowski personal communication, 2016) 
**A(9; 5,5; 1,2,3,4,6) B. & J. Faudree 2013;  ***multicelestial 15#(3,2,1);(7,6,5,4) 

(Smallest I know)



Topological (365) Geometric (485)

Geometric (966)Topological (886)

B. & Ng, 2010

B. 2014 
B., 2008

B. & Bokowski, unpublished



Theorem: Geometric (nk) configurations exist for all 
large enough n !

For each k≥2 there exists Nk so that for n ≥ Nk, 
there exists at least one (nk) configuration.  
(B., Gévay, Pisanski, in review)

k Nk ≤ …  k Nk ≤ …

4 24 8 1333584

5 576 9 19353600

6 7350 10 287400960

7 96768 11 3832012800



Affine Replication
(mk-1) → ((k+1)mk)
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Affine Switch
(mk) → (((k-1)m+1)k), … (((k-1)m+p)k) 

(93) → (454) (93) → (193), (203), (213)



Identification: 
How can we find new 

(infinite classes of) 
configurations?



Symmetry

• Non-trivial 
geometric 
symmetry: rotations 
and reflections


• Symmetry classes? 
k-astral.


• “small” number of 
symmetry classes

• symmetric vs. 

balanced
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Symmetry helps find examples!



Main Tools

• Reduced Levi Graph: 
represent families of 
configurations 
compactly 

• Geometric Lemmas
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Levi Graphs
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Levi Graphs
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Reduced Levi Graphs
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Infinite Families of Configurations
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Infinite Families of Configurations

δ+t2
δ
s2

t1
s1

  ∏ Cos(si π/m) = ∏ Cos(ti π/m) ∑(si - ti) is even 

δ
δ+t3s3

t2

s2
t1

s1



Combine for new examples!
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Combine for new examples!

Smallest known 6-configuration: (966)
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Important open question

Given a reduced Levi graph, can we find a 
corresponding geometric configuration?

Z5 4

3

2

1

0

4

32

1

0

4
3

21

021

3

1

Techniques for 3-configurations…wide open in general!



Classification: 
Given an infinite class of 

(geometric) 
configurations, how are 
the elements related?



Configuration Isomorphism 
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Configuration Isomorphism
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Not isomorphic!



Isomorphism Question

Isomorphic 4-configurations
18#(6,5;1,4) 18#(8,7;1,6)

0

1

2
3

456
7

8

9

10

11
12 13 14 15

16

17

18
19

20
212223

24
25

26
27
28

29 3031 32
33

34
35 0

6

182314

33
34

4

20
19

3035

12

29
24

8
3126

1

15

11

27

7

25

13
28

9

21

3

32

17
22

5

10

16

2



Isomorphism Question

18#(6,4;1,5) 18#(6,2;5,7) 18#(8,6;1,7)

18#(6,5;1,4) 18#(7,6;2,5) 18#(8,7;1,6)

δ+t2
δ
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t1
s1

Z18



Isomorphism Question

• Which infinite families of configurations have isomorphic 
members?


• (Levi) graph isomorphism problem is hard

• Determining isomorphism via Reduced Levi Graph?


• Isomorphism relationships within/across 
known infinite families?  

•Combinatorial properties of classes of 
geometric configurations?



Application: 
How can we use 

configurations to answer 
other questions? 



Configurations and Cages

Tutte-Coxeter cage

21
3

1

(153) Cremona-Richmond(8,3)-cage

Z5



Configurations and Cages
270 T. Pisanski et al. / Discrete Mathematics 275 (2004) 265–276

(a) (b)

Fig. 5. The smallest 5-gonal (v3) con!guration (a) resulting from the Balaban 10-cage. It is a covering graph
over (b) with group Z5.

many elusive transitive permutation groups, but none of them is 2-closed. It is believed
that no 2-closed transitive group is elusive. This conjecture is usually referred to as
the polycirculant conjecture. For further results and recent advances with regards to
this conjecture see [10,13,19,20,22]. The concept of polycirculants extends naturally to
con!gurations (see the next subsection).
By computing the automorphism groups of all 10-cages we get the following result.

Proposition 3. The automorphism groups of the 10-cages have orders 80; 120; 24,
respectively. The Balaban cage and the second 10-cage are polycirculants.

The concept of voltage graphs is generally used to simplify the description of large
graphs. We refer the reader who is not familiar with this topic to the book by Gross
and Tucker [14] or to the book by White [28]. For example, the Tutte 8-cage is a Z5
covering graph over the voltage graph in Fig. 4(b). The !rst and the second 10-cage
are Z5 covering graphs over the voltage graphs in Figs. 5(b) and 6(c). Note that
in the pictures we present, voltages and arrows are omitted from the edges carrying
voltage 0.

2.3. The smallest 5-gonal (v3) con!gurations

The smallest 5-gonal con!gurations, triangle- and quadrangle-free con!gurations, re-
sult from 10-cages.
The 5-gonal (353) con!guration given by the Balaban cage is self-polar and is

presented in Fig. 5(a). We call it the Balaban con!guration. The second cage gives
rise to a pair of dual 5-gonal (353) con!gurations, see Figs. 6(a) and (b). The third
cage also gives rise to a pair of dual con!gurations. Hence we have the following
result.

T. Pisanski et al. / Discrete Mathematics 275 (2004) 265–276 267

(a) (b)

Fig. 1. The Balaban 10-cage or B(5) (a). The two outer 10-gons can be interchanged with the two inner
10-gons. Its generalization B(9) is shown on the right.

(a) (b)

Fig. 2. The other two 10-cages are also bipartite and give rise to the con!gurations that are triangle- and
quadrangle-free.

Balaban found one of the three 10-cages which is shown in Fig. 1(a), see [1]. The
other two 10-cages are shown in Fig. 2.
Up to g6 10 the g-cages are classi!ed completely. For g = 12 there is a unique

12-cage. All other cases (g = 11, g¿ 12) are still open. For a survey on cages see
also [24,26,29,30]. The latest results on cages are given in [23].
Cages and related graphs have found their applications in chemistry [7], e.g. in

modelling chemical reactions [2] and degenerate rearrangements [18].

2. Cages and con!gurations

2.1. Overview

We have mentioned already that the size of the smallest n-gonal symmetric (v3)
con!gurations is related to the existence of cages. By Proposition 1, each bipartite

Balaban 10-cage

(Both images from Pisanski et al., 2004)

(353) configuration
(Triangle and quadrangle-free)



Conjecture: All (3,g)-cages where g is an even 
integer are bipartite graphs (Pisanski et al, 2004)

Can we use (symmetric, polycyclic) 
configurations to find small bipartite 

graphs with large girth?



5-cycle double-cover conjecture

Cover every bridgeless cubic 
graph with 5 even subgraphs 
so that each edge is in exactly 

two of the cycles

Color with Desargues 
Configuration  

(Kral et al, 2009)
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Fulkerson conjecture

Every bridgeless cubic 
graph has 6 perfect 
matchings so that each 
edge is in two matchings

Edge-color with the 
Cremona-Richmond 
Configuration (Kral, et 
al 2009)
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Advertisement: Graduate students!

• Mathematical biology, computational algebra, algebraic 
statistics. Nonharmonic Fourier series, partial differential 
equations, control theory, inverse problems. Applied 
mathematics, numerical analysis, analysis on manifolds. 
Combinatorics; graph theory. Graph theory; combinatorics; 
order. Partial differential equations, geometric analysis, 
mathematical physics. Mathematical biology, algebraic 
statistics. Operator theory, complex analysis, math physics. 
Discrete geometry, especially abstract polytopes, convex 
polytopes and tilings 

www.uaf.edu/dms

http://www.uaf.edu/dms


Thank you!


