### Graphs that are Cayley on more than one group

### Joy Morris

University of Lethbridge

December 8, 2020

Algebraic Graph Theory International Webinar



### Introduction

- Cayley Graphs
- Regular actions
- Introductory examples

### Circulants of prime power order; lexicographic products

- Example
- Lexicographic products
- Results



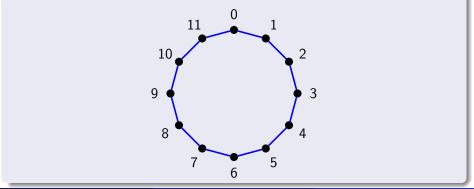
## Introduction

Throughout this talk, assume groups and graphs are finite.

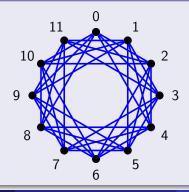
A graph is circulant if it can be drawn with its vertices in a circle, so that its edges are precisely the pairs of vertices whose distance apart (around the circle) lies in some set S.

A graph is circulant if it can be drawn with its vertices in a circle, so that its edges are precisely the pairs of vertices whose distance apart (around the circle) lies in some set S.

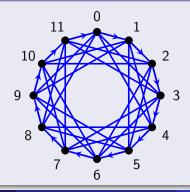
A graph is circulant if it can be drawn with its vertices in a circle, so that its edges are precisely the pairs of vertices whose distance apart (around the circle) lies in some set S.



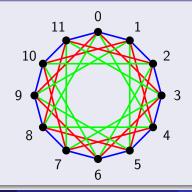
A graph is circulant if it can be drawn with its vertices in a circle, so that its edges are precisely the pairs of vertices whose distance apart (around the circle) lies in some set S.



A graph is circulant if it can be drawn with its vertices in a circle, so that its edges are precisely the pairs of vertices whose distance apart (around the circle) lies in some set S.



A graph is circulant if it can be drawn with its vertices in a circle, so that its edges are precisely the pairs of vertices whose distance apart (around the circle) lies in some set S.



# A circulant graph Circ(n; S) is a graph whose vertices are the elements of the group $\mathbb{Z}_n$ ,

A circulant graph Circ(n; S) is a graph whose vertices are the elements of the group  $\mathbb{Z}_n$ , with edge set  $E = \{(i, j) : j - i \in S\}$ , where  $S \subset \mathbb{Z}_n$ .

A circulant graph Circ(n; S) is a graph whose vertices are the elements of the group  $\mathbb{Z}_n$ , with edge set  $E = \{(i, j) : j - i \in S\}$ , where  $S \subset \mathbb{Z}_n$ .

### Note

If S = -S then we don't use arrows.

A circulant graph Circ(n; S) is a graph whose vertices are the elements of the group  $\mathbb{Z}_n$ , with edge set  $E = \{(i, j) : j - i \in S\}$ , where  $S \subset \mathbb{Z}_n$ .

### Note

If S = -S then we don't use arrows. We usually assume  $0 \notin S$ .

Adding d to every vertex (mod n) is always an automorphism of any circulant.

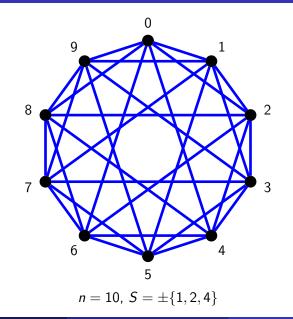
Adding d to every vertex (mod n) is always an automorphism of any circulant. This corresponds to rotating the picture.

Adding *d* to every vertex (mod *n*) is always an automorphism of any circulant. This corresponds to rotating the picture. It leads to a group of automorphisms that is isomorphic to  $\mathbb{Z}_n$ .

- Adding *d* to every vertex (mod *n*) is always an automorphism of any circulant. This corresponds to rotating the picture. It leads to a group of automorphisms that is isomorphic to  $\mathbb{Z}_n$ .
- If our structure is a graph (as opposed to a digraph), multiplication by -1 (reflection through the vertical axis)

- Adding *d* to every vertex (mod *n*) is always an automorphism of any circulant. This corresponds to rotating the picture. It leads to a group of automorphisms that is isomorphic to  $\mathbb{Z}_n$ .
- If our structure is a graph (as opposed to a digraph), multiplication by -1 (reflection through the vertical axis) will always be an automorphism.

- Adding *d* to every vertex (mod *n*) is always an automorphism of any circulant. This corresponds to rotating the picture. It leads to a group of automorphisms that is isomorphic to  $\mathbb{Z}_n$ .
- If our structure is a graph (as opposed to a digraph), multiplication by -1 (reflection through the vertical axis) will always be an automorphism.



## Cayley graphs

### Definition

The Cayley (di)graph  $\Gamma = Cay(G, S)$  is the (di)graph whose vertices are the elements of G, with an arc from g to sg if and only if  $s \in S$ .



The Cayley (di)graph  $\Gamma = Cay(G, S)$  is the (di)graph whose vertices are the elements of G, with an arc from g to sg if and only if  $s \in S$ .



### Notice

•  $\Gamma$  will be a graph if and only if  $S = S^{-1}$ ;

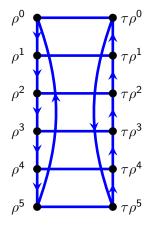
The Cayley (di)graph  $\Gamma = Cay(G, S)$  is the (di)graph whose vertices are the elements of G, with an arc from g to sg if and only if  $s \in S$ .



### Notice

- $\Gamma$  will be a graph if and only if  $S = S^{-1}$ ;
- right-multiplication by any element of G is necessarily an automorphism of this (di)graph (there is an arc from gh to sgh).

## Example: Cay( $D_6$ , { $\rho$ , $\tau$ })



Given any group G, it admits a natural permutation action on the set of elements of G,

 $\{ au_g: g \in G\}$ , where  $au_g(h) = hg$  for every  $h \in G$ 

$$\{ au_{g}:g\in G\}$$
, where  $au_{g}(h)=hg$  for every  $h\in G$ 

is called the right-regular action of G.

$$\{ au_{m{g}}:m{g}\inm{G}\}$$
, where  $au_{m{g}}(m{h})=m{h}m{g}$  for every  $m{h}\inm{G}$ 

is called the right-regular action of G. [Cayley's Theorem: G is isomorphic to a subgroup of Sym(|G|).]

$$\{ au_{m{g}}:m{g}\inm{G}\}$$
, where  $au_{m{g}}(m{h})=m{h}m{g}$  for every  $m{h}\inm{G}$ 

is called the right-regular action of G. [Cayley's Theorem: G is isomorphic to a subgroup of Sym(|G|).]

Notice that this action is regular:

$$\{ au_{m{g}}:m{g}\inm{G}\}$$
, where  $au_{m{g}}(m{h})=m{h}m{g}$  for every  $m{h}\inm{G}$ 

is called the right-regular action of G. [Cayley's Theorem: G is isomorphic to a subgroup of Sym(|G|).]

Notice that this action is regular: for any  $x, y \in G$ , there is a unique  $g \in G$  such that  $\tau_g(x) = y$ :

$$\{ au_{m{g}}:m{g}\inm{G}\}$$
, where  $au_{m{g}}(m{h})=m{h}m{g}$  for every  $m{h}\inm{G}$ 

is called the right-regular action of G. [Cayley's Theorem: G is isomorphic to a subgroup of Sym(|G|).]

Notice that this action is regular: for any  $x, y \in G$ , there is a unique  $g \in G$  such that  $\tau_g(x) = y$ : namely,  $g = x^{-1}y$ .

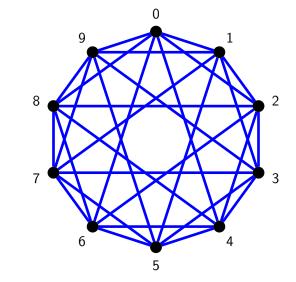
### Proposition (Sabidussi)

A (di)graph is Cayley on the group G if and only if its group of automorphisms contains the (right-)regular representation of G.

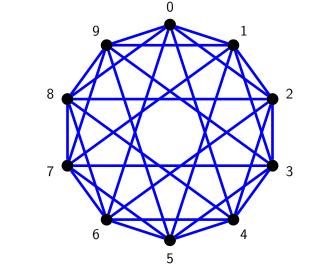
#### Proposition (Sabidussi)

A (di)graph is Cayley on the group G if and only if its group of automorphisms contains the (right-)regular representation of G.

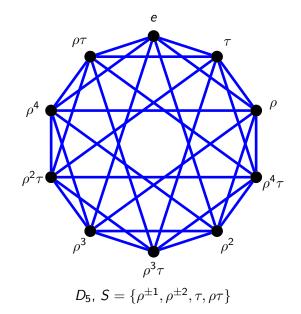
So if a graph has more than one regular subgroup in its automorphism group, it can be represented in more than one way as a Cayley graph.

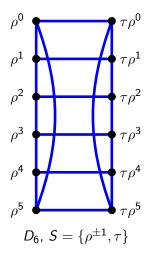


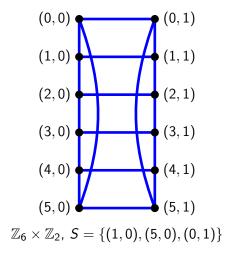
$$n = 10, S = \pm \{1, 2, 4\}.$$



n = 10,  $S = \pm \{1, 2, 4\}$ .  $D_{10} \leq Aut(\Gamma)$ , including a regular action of  $D_5$ .







### Proposition (M., Smolčić, 2020)

#### A circulant graph of even order 2k is also a Cayley graph on $D_k$ .

### Proposition (M., Smolčić, 2020)

A circulant graph of even order 2k is also a Cayley graph on  $D_k$ .

A Cayley graph on Dih(A, x) will also be a Cayley graph on  $A \times \mathbb{Z}_2$  if there exists some  $y \in xA$  such that for every  $a \in A$  we have  $ya \in S \cap xA$  if and only if  $ya^{-1} \in S \cap xA$ .

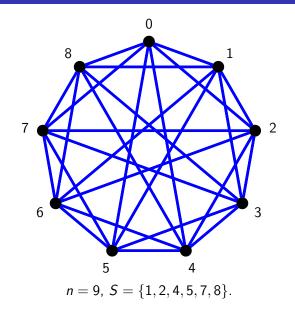
### Proposition (M., Smolčić, 2020)

A circulant graph of even order 2k is also a Cayley graph on  $D_k$ .

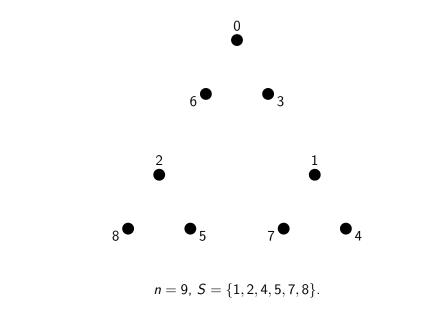
A Cayley graph on Dih(A, x) will also be a Cayley graph on  $A \times \mathbb{Z}_2$  if there exists some  $y \in xA$  such that for every  $a \in A$  we have  $ya \in S \cap xA$  if and only if  $ya^{-1} \in S \cap xA$ . In particular, this will always be true if  $|S \cap xA| \leq 1$ .

# Circulants of prime power order and Lexicographic Products

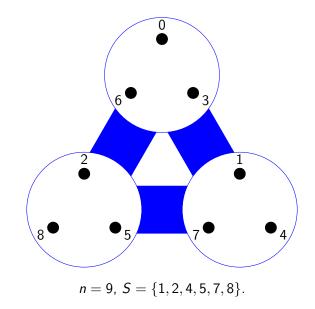
# Example



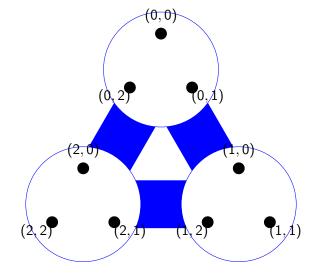
### Example redrawn



# Example redrawn



# Example redrawn

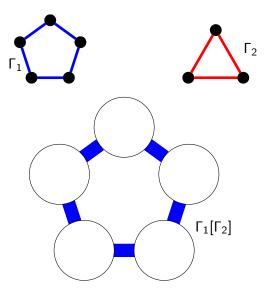


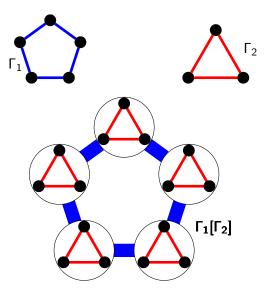
 $\mathbb{Z}_3 \times \mathbb{Z}_3$ ,  $S = \{(1,0), (1,1), (1,2), (2,0), (2,1), (2,2)\}.$ 

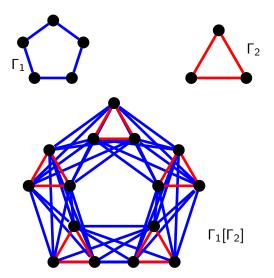
Joy Morris (University of Lethbridge)











### Theorem (Dobson, M, 2009)

lf:

•  $\Gamma$  is a lexicographic product of  $\Gamma_1$  and  $\Gamma_2$ ;

### Theorem (Dobson, M, 2009)

lf:

- $\Gamma$  is a lexicographic product of  $\Gamma_1$  and  $\Gamma_2$ ; and
- Γ is not complete or empty,

### Theorem (Dobson, M, 2009)

lf:

- $\Gamma$  is a lexicographic product of  $\Gamma_1$  and  $\Gamma_2$ ; and
- Γ is not complete or empty,

```
then there are graphs \Gamma'_1 and \Gamma'_2 such that:
```

```
• \Gamma \cong \Gamma'_1[\Gamma'_2]; and
```

### Theorem (Dobson, M, 2009)

lf:

- $\Gamma$  is a lexicographic product of  $\Gamma_1$  and  $\Gamma_2$ ; and
- Γ is not complete or empty,

then there are graphs  $\Gamma'_1$  and  $\Gamma'_2$  such that:

In general,  $\Gamma'_1 = \Gamma_1$ .

Whether or not a Cayley graph is a lexicographic product is easy to detect from the connection set S:

Whether or not a Cayley graph is a lexicographic product is easy to detect from the connection set S:

#### Proposition

A Cayley graph Cay(G, S) is a lexicographic product if and only if S is a union of right cosets of some  $H \leq G$ .

Theorem (Joseph, 1995)

Let p be an odd prime.

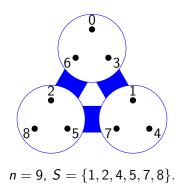
#### Theorem (Joseph, 1995)

Let p be an odd prime. Then  $\Gamma = Circ(p^2, S)$  is also a Cayley graph on  $\mathbb{Z}_p \times \mathbb{Z}_p$  if and only if  $\Gamma$  is the lexicographic product of two circulant graphs of order p.

#### Theorem (Joseph, 1995)

Let p be an odd prime. Then  $\Gamma = Circ(p^2, S)$  is also a Cayley graph on  $\mathbb{Z}_p \times \mathbb{Z}_p$  if and only if  $\Gamma$  is the lexicographic product of two circulant graphs of order p.

Recall our example:





Anne Joseph O'Connell

Let p be an odd prime. Then  $\Gamma = Circ(p^n, S)$  is also a Cayley graph of some other [abelian] group of order  $p^n$  if and only if  $\Gamma$  is a lexicographic product.

Let p be an odd prime. Then  $\Gamma = Circ(p^n, S)$  is also a Cayley graph of some other [abelian] group of order  $p^n$  if and only if  $\Gamma$  is a lexicographic product. Abelian is not necessary.

Let p be an odd prime. Then  $\Gamma = Circ(p^n, S)$  is also a Cayley graph of some other [abelian] group of order  $p^n$  if and only if  $\Gamma$  is a lexicographic product. Abelian is not necessary.

#### Theorem (Kovács, Servatius, 2012)

The graph  $\Gamma = Circ(2^n, S)$  is also a Cayley graph of some other abelian group of order  $2^n$  if and only if  $\Gamma$  is a lexicographic product.

Let p be an odd prime. Then  $\Gamma = Circ(p^n, S)$  is also a Cayley graph of some other [abelian] group of order  $p^n$  if and only if  $\Gamma$  is a lexicographic product. Abelian is not necessary.

#### Theorem (Kovács, Servatius, 2012)

The graph  $\Gamma = Circ(2^n, S)$  is also a Cayley graph of some other abelian group of order  $2^n$  if and only if  $\Gamma$  is a lexicographic product. Abelian is necessary, since  $Circ(2^n, S)$  is always a Cayley graph on  $D_{2^{n-1}}$ .



#### Istvan Kovács

# Automorphism groups of such graphs

Suppose  $\Gamma \cong \Gamma_1[\Gamma_2]$  and  $\Gamma$  is a circulant of order  $p^n$ .

Since Aut( $\Gamma_1[\Gamma_2]$ )  $\geq$  Aut( $\Gamma_1$ )  $\wr$  Aut( $\Gamma_2$ ), and  $\Gamma_1$  and  $\Gamma_2$  are vertex-transitive, this means that

Since Aut( $\Gamma_1[\Gamma_2]$ )  $\geq$  Aut( $\Gamma_1$ )  $\wr$  Aut( $\Gamma_2$ ), and  $\Gamma_1$  and  $\Gamma_2$  are vertex-transitive, this means that

 $|\operatorname{Aut}(\Gamma_1[\Gamma_2])| \geq |V(\Gamma_2)|^{|V(\Gamma_1)|} |V(\Gamma_1)|$ 

Since Aut( $\Gamma_1[\Gamma_2]$ )  $\geq$  Aut( $\Gamma_1$ )  $\wr$  Aut( $\Gamma_2$ ), and  $\Gamma_1$  and  $\Gamma_2$  are vertex-transitive, this means that

$$\begin{aligned} |\operatorname{Aut}(\Gamma_1[\Gamma_2])| &\geq |V(\Gamma_2)|^{|V(\Gamma_1)|} |V(\Gamma_1)| \\ &\geq (p^{n-1})^p p \end{aligned}$$

Since Aut( $\Gamma_1[\Gamma_2]$ )  $\geq$  Aut( $\Gamma_1$ )  $\wr$  Aut( $\Gamma_2$ ), and  $\Gamma_1$  and  $\Gamma_2$  are vertex-transitive, this means that

$$\begin{aligned} |\operatorname{Aut}(\Gamma_1[\Gamma_2])| &\geq |V(\Gamma_2)|^{|V(\Gamma_1)|} |V(\Gamma_1)| \\ &\geq (p^{n-1})^p p = p^{pn-p+1}. \end{aligned}$$

Since Aut( $\Gamma_1[\Gamma_2]$ )  $\geq$  Aut( $\Gamma_1$ )  $\wr$  Aut( $\Gamma_2$ ), and  $\Gamma_1$  and  $\Gamma_2$  are vertex-transitive, this means that

$$\begin{aligned} |\mathsf{Aut}(\Gamma_1[\Gamma_2])| &\geq |V(\Gamma_2)|^{|V(\Gamma_1)|} |V(\Gamma_1)| \\ &\geq (p^{n-1})^p p = p^{pn-p+1}. \end{aligned}$$

Whereas the automorphism of a circulant digraph on  $p^n$  vertices could be as small as  $p^n$ .

Since Aut( $\Gamma_1[\Gamma_2]$ )  $\geq$  Aut( $\Gamma_1$ )  $\wr$  Aut( $\Gamma_2$ ), and  $\Gamma_1$  and  $\Gamma_2$  are vertex-transitive, this means that

$$\begin{aligned} |\mathsf{Aut}(\Gamma_1[\Gamma_2])| &\geq |V(\Gamma_2)|^{|V(\Gamma_1)|} |V(\Gamma_1)| \\ &\geq (p^{n-1})^p p = p^{pn-p+1}. \end{aligned}$$

Whereas the automorphism of a circulant digraph on  $p^n$  vertices could be as small as  $p^n$ . So these graphs have Cayley index at least  $p^{pn-p-n+1}$ .

Since Aut( $\Gamma_1[\Gamma_2]$ )  $\geq$  Aut( $\Gamma_1$ )  $\wr$  Aut( $\Gamma_2$ ), and  $\Gamma_1$  and  $\Gamma_2$  are vertex-transitive, this means that

$$\begin{aligned} |\mathsf{Aut}(\Gamma_1[\Gamma_2])| &\geq |V(\Gamma_2)|^{|V(\Gamma_1)|} |V(\Gamma_1)| \\ &\geq (p^{n-1})^p p = p^{pn-p+1}. \end{aligned}$$

Whereas the automorphism of a circulant digraph on  $p^n$  vertices could be as small as  $p^n$ . So these graphs have Cayley index at least  $p^{pn-p-n+1}$ .

In fact, typically these graphs will be Cayley on lots of groups.

# Other results

## What if the order isn't a prime power?

Let 
$$n = p_1^{a_1} \cdots p_r^{a_r}$$
, and  $k = p_1 \cdots p_r$ .

Let  $n = p_1^{a_1} \cdots p_r^{a_r}$ , and  $k = p_1 \cdots p_r$ . Suppose that  $gcd(k, \varphi(k)) = 1$ .

Let  $n = p_1^{a_1} \cdots p_r^{a_r}$ , and  $k = p_1 \cdots p_r$ . Suppose that  $gcd(k, \varphi(k)) = 1$ . The graph Circ(n, S) is also a Cayley graph of some other abelian group of order n if and only if

Let  $n = p_1^{a_1} \cdots p_r^{a_r}$ , and  $k = p_1 \cdots p_r$ . Suppose that  $gcd(k, \varphi(k)) = 1$ . The graph Circ(n, S) is also a Cayley graph of some other abelian group of order n if and only if there exist lexicographic products  $\Gamma_1, \ldots, \Gamma_r$  where  $\Gamma_i$  has order  $p_i^{a_i}$ , such that  $Aut(\Gamma) \ge Aut(\Gamma_1) \times \cdots \times Aut(\Gamma_r)$ .

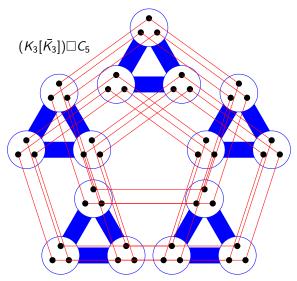
Let  $n = p_1^{a_1} \cdots p_r^{a_r}$ , and  $k = p_1 \cdots p_r$ . Suppose that  $gcd(k, \varphi(k)) = 1$ . The graph Circ(n, S) is also a Cayley graph of some other abelian group of order n if and only if there exist lexicographic products  $\Gamma_1, \ldots, \Gamma_r$  where  $\Gamma_i$  has order  $p_i^{a_i}$ , such that  $Aut(\Gamma) \ge Aut(\Gamma_1) \times \cdots \times Aut(\Gamma_r)$ .

#### Conjecture

The condition  $gcd(k, \varphi(k)) = 1$  is not necessary.

## Example

## $\mathsf{Circ}(45,\pm\{5,10,20,9\})\cong\mathsf{Cay}(\mathbb{Z}_3\times\mathbb{Z}_{15},\pm\{(1,0),(1,5),(1,10),(0,6)\}).$



# What if neither group is cyclic?

Let p be an odd prime and  $n \ge 3$ . Let G be an abelian p-group of order  $p^n$  that is not cyclic.

Let p be an odd prime and  $n \ge 3$ . Let G be an abelian p-group of order  $p^n$  that is not cyclic. Then there exists a Cayley digraph on G that is also Cayley on some nonabelian group.

Let p be an odd prime and  $n \ge 3$ . Let G be an abelian p-group of order  $p^n$  that is not cyclic. Then there exists a Cayley digraph on G that is also Cayley on some nonabelian group. Furthermore, this is true for some digraph with Cayley index p, so the full automorphism group has order  $p^{n+1}$ .

Let p be an odd prime and  $n \ge 3$ . Let G be an abelian p-group of order  $p^n$  that is not cyclic. Then there exists a Cayley digraph on G that is also Cayley on some nonabelian group. Furthermore, this is true for some digraph with Cayley index p, so the full automorphism group has order  $p^{n+1}$ .

## Proposition (Morgan, M., Verret, 2020)

Suppose that  $G = \langle x, y \rangle$ , where |x| = 2 and |y| = 3, and G is neither cyclic nor  $\mathbb{Z}_3 \wr \mathbb{Z}_2$ .

Let p be an odd prime and  $n \ge 3$ . Let G be an abelian p-group of order  $p^n$  that is not cyclic. Then there exists a Cayley digraph on G that is also Cayley on some nonabelian group. Furthermore, this is true for some digraph with Cayley index p, so the full automorphism group has order  $p^{n+1}$ .

#### Proposition (Morgan, M., Verret, 2020)

Suppose that  $G = \langle x, y \rangle$ , where |x| = 2 and |y| = 3, and G is neither cyclic nor  $\mathbb{Z}_3 \wr \mathbb{Z}_2$ . Further suppose there is some  $H \leq G$  such that |G:H| = 2.

Let p be an odd prime and  $n \ge 3$ . Let G be an abelian p-group of order  $p^n$  that is not cyclic. Then there exists a Cayley digraph on G that is also Cayley on some nonabelian group. Furthermore, this is true for some digraph with Cayley index p, so the full automorphism group has order  $p^{n+1}$ .

#### Proposition (Morgan, M., Verret, 2020)

Suppose that  $G = \langle x, y \rangle$ , where |x| = 2 and |y| = 3, and G is neither cyclic nor  $\mathbb{Z}_3 \wr \mathbb{Z}_2$ . Further suppose there is some  $H \leq G$  such that |G:H| = 2. Then there is a Cayley digraph on G that is also a Cayley digraph on  $H \times \mathbb{Z}_2$ .

Let p be an odd prime and  $n \ge 3$ . Let G be an abelian p-group of order  $p^n$  that is not cyclic. Then there exists a Cayley digraph on G that is also Cayley on some nonabelian group. Furthermore, this is true for some digraph with Cayley index p, so the full automorphism group has order  $p^{n+1}$ .

## Proposition (Morgan, M., Verret, 2020)

Suppose that  $G = \langle x, y \rangle$ , where |x| = 2 and |y| = 3, and G is neither cyclic nor  $\mathbb{Z}_3 \wr \mathbb{Z}_2$ . Further suppose there is some  $H \leq G$  such that |G : H| = 2. Then there is a Cayley digraph on G that is also a Cayley digraph on  $H \times \mathbb{Z}_2$ . Furthermore, this is true for some digraph with Cayley index 2.

