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Introduction
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Disclaimer

Throughout this talk, assume groups and graphs are finite.
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Circulant graphs

Definition

A graph is circulant if it can be drawn with its vertices in a circle, so that
its edges are precisely the pairs of vertices whose distance apart (around
the circle) lies in some set S.

Examples
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Definition

A circulant graph Circ(n; S) is a graph whose vertices are the elements of
the group Zn,

with edge set E = {(i , j) : j − i ∈ S}, where S ⊂ Zn.

Note

If S = −S then we don’t use arrows. We usually assume 0 6∈ S .
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Automorphisms of Circulant Graphs

Adding d to every vertex (mod n) is always an automorphism of any
circulant.

This corresponds to rotating the picture. It leads to a group of
automorphisms that is isomorphic to Zn.

If our structure is a graph (as opposed to a digraph), multiplication by −1
(reflection through the vertical axis) will always be an automorphism.
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Example
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n = 10, S = ±{1, 2, 4}
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Cayley graphs

Definition

The Cayley (di)graph Γ = Cay(G , S) is the (di)graph whose vertices are
the elements of G, with an arc from g to sg if and only if s ∈ S.

g

sg

Notice

Γ will be a graph if and only if S = S−1;

right-multiplication by any element of G is necessarily an
automorphism of this (di)graph (there is an arc from gh to sgh).
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Example: Cay(D6, {ρ, τ})

ρ0 τρ0

ρ1 τρ1

ρ2 τρ2

ρ3 τρ3

ρ4 τρ4

ρ5 τρ5
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Regular action of a group

Given any group G , it admits a natural permutation action on the set of
elements of G ,

by right- (or left-) multiplication.

{τg : g ∈ G}, where τg (h) = hg for every h ∈ G

is called the right-regular action of G .
[Cayley’s Theorem: G is isomorphic to a subgroup of Sym(|G |).]

Notice that this action is regular: for any x , y ∈ G , there is a unique
g ∈ G such that τg (x) = y : namely, g = x−1y .
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Cayley graphs and Regular groups of Automorphisms

Proposition (Sabidussi)

A (di)graph is Cayley on the group G if and only if its group of
automorphisms contains the (right-)regular representation of G.

So if a graph has more than one regular subgroup in its automorphism
group, it can be represented in more than one way as a Cayley graph.
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Cayley graphs on different groups - warm-up examples

0

1

2

3

4

5

6

7

8

9

n = 10, S = ±{1, 2, 4}.

D10 ≤ Aut(Γ), including a regular action of D5.
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Cayley graphs on different groups - warm-up examples

e

τ

ρ

ρ4τ

ρ2

ρ3τ

ρ3

ρ2τ

ρ4

ρτ

D5, S = {ρ±1, ρ±2, τ, ρτ}
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Cayley graphs on different groups - warm-up examples

ρ0 τρ0

ρ1 τρ1

ρ2 τρ2

ρ3 τρ3

ρ4 τρ4
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Cayley graphs on different groups - warm-up examples

(0, 0) (0, 1)

(1, 0) (1, 1)

(2, 0) (2, 1)

(3, 0) (3, 1)

(4, 0) (4, 1)

(5, 0) (5, 1)

Z6 × Z2, S = {(1, 0), (5, 0), (0, 1)}
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Understanding these examples

Proposition (M., Smolčić, 2020)

A circulant graph of even order 2k is also a Cayley graph on Dk .

A Cayley graph on Dih(A, x) will also be a Cayley graph on A×Z2 if there
exists some y ∈ xA such that for every a ∈ A we have ya ∈ S ∩ xA if and
only if ya−1 ∈ S ∩ xA. In particular, this will always be true if |S ∩ xA| ≤ 1.
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Circulants of prime power order
and Lexicographic Products
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Example

0

1

2

3

45

6

7

8

n = 9, S = {1, 2, 4, 5, 7, 8}.
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Example redrawn

0

36

1

47

2

58

n = 9, S = {1, 2, 4, 5, 7, 8}.
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Example redrawn

0

36

1

47

2

58

n = 9, S = {1, 2, 4, 5, 7, 8}.
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Example redrawn

(0, 0)

(0, 1)(0, 2)

(1, 0)

(1, 1)(1, 2)

(2, 0)

(2, 1)(2, 2)

Z3 × Z3, S = {(1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2)}.
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Lexicographic (Wreath) Products

Γ1

Γ2
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Lexicographic products and automorphism groups play nicely together.

Theorem (Dobson, M, 2009)

If:

Γ is a lexicographic product of Γ1 and Γ2; and

Γ is not complete or empty,

then there are graphs Γ′1 and Γ′2 such that:

Γ ∼= Γ′1[Γ′2]; and

Aut(Γ) ∼= Aut(Γ′1) o Aut(Γ′2).

In general, Γ′1 = Γ1.
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Cayley graphs that are lexicographic products

Whether or not a Cayley graph is a lexicographic product is easy to detect
from the connection set S :

Proposition

A Cayley graph Cay(G ,S) is a lexicographic product if and only if S is a
union of right cosets of some H ≤ G .
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Theorem (Joseph, 1995)

Let p be an odd prime.

Then Γ = Circ(p2,S) is also a Cayley graph on
Zp × Zp if and only if Γ is the lexicographic product of two circulant
graphs of order p.

Recall our example:

0

36

1

47

2

58

n = 9, S = {1, 2, 4, 5, 7, 8}.
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Anne Joseph O’Connell
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More generally

Theorem (M., 1999)

Let p be an odd prime. Then Γ = Circ(pn,S) is also a Cayley graph of
some other [abelian] group of order pn if and only if Γ is a lexicographic
product. Abelian is not necessary.

Theorem (Kovács, Servatius, 2012)

The graph Γ = Circ(2n, S) is also a Cayley graph of some other abelian
group of order 2n if and only if Γ is a lexicographic product. Abelian is
necessary, since Circ(2n,S) is always a Cayley graph on D2n−1 .
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Theorem (Kovács, Servatius, 2012)

The graph Γ = Circ(2n, S) is also a Cayley graph of some other abelian
group of order 2n if and only if Γ is a lexicographic product.

Abelian is
necessary, since Circ(2n,S) is always a Cayley graph on D2n−1 .

Joy Morris (University of Lethbridge) Different Groups December 8, 2020 29 / 36



More generally

Theorem (M., 1999)

Let p be an odd prime. Then Γ = Circ(pn,S) is also a Cayley graph of
some other [abelian] group of order pn if and only if Γ is a lexicographic
product. Abelian is not necessary.
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Istvan Kovács
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Automorphism groups of such graphs

Suppose Γ ∼= Γ1[Γ2] and Γ is a circulant of order pn.

Since Aut(Γ1[Γ2]) ≥ Aut(Γ1) o Aut(Γ2), and Γ1 and Γ2 are
vertex-transitive, this means that

|Aut(Γ1[Γ2])| ≥ |V (Γ2)||V (Γ1)||V (Γ1)|
≥ (pn−1)pp = ppn−p+1.

Whereas the automorphism of a circulant digraph on pn vertices could be
as small as pn. So these graphs have Cayley index at least ppn−p−n+1.

In fact, typically these graphs will be Cayley on lots of groups.
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Other results
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What if the order isn’t a prime power?

Theorem (Dobson, M.)

Let n = pa1
1 · · · parr , and k = p1 · · · pr . Suppose that gcd(k, ϕ(k)) = 1.

The graph Circ(n,S) is also a Cayley graph of some other abelian group of
order n if and only if there exist lexicographic products Γ1, . . . , Γr where Γi

has order paii , such that Aut(Γ) ≥ Aut(Γ1)× · · · × Aut(Γr ).

Conjecture

The condition gcd(k , ϕ(k)) = 1 is not necessary.
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Example

Circ(45,±{5, 10, 20, 9}) ∼= Cay(Z3 × Z15,±{(1, 0), (1, 5), (1, 10), (0, 6)}).

(K3[K̄3])�C5
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What if neither group is cyclic?

Theorem (Morgan, M., Verret, 2020)

Let p be an odd prime and n ≥ 3. Let G be an abelian p-group of order
pn that is not cyclic. Then there exists a Cayley digraph on G that is also
Cayley on some nonabelian group. Furthermore, this is true for some
digraph with Cayley index p, so the full automorphism group has order
pn+1.

Proposition (Morgan, M., Verret, 2020)

Suppose that G = 〈x , y〉, where |x | = 2 and |y | = 3, and G is neither
cyclic nor Z3 o Z2. Further suppose there is some H ≤ G such that
|G : H| = 2. Then there is a Cayley digraph on G that is also a Cayley
digraph on H × Z2. Furthermore, this is true for some digraph with Cayley
index 2.
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Thank you!
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