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Expansion

A finite graph X is an e-expander, if

9V

h(X) = mingc vy x min (| V], | X\ V)

is at least . (0V = edge-boundary of V).




Regularity

Xis (ap,...,an_1)-regular if X is ag-regular
and for every v of X, the sphere of radius 1
around v is (a1, ...,ap_1)-regular.

If a,_1 # 0, we say X is highly regular (HR)
of level n.



Connectivity

If the links of an (HR) graph are connected
we call it highly regular connected (HRC).



Chapman-Linial-Peled’s question

@ Chapman, Linial and Peled studied
HR-expander graphs of level 2 and ask
whether such HR-graphs of level 3 exist.

@ We answer this question positively, also
independently done by Friedgut-lluz.

@ Regularity and connectivity depend on the
particular Coxeter diagrams.

@ Expansion comes from superapproximation.



Polytopes and symmetry groups

Lemma

Let k be the largest integer for which P has a
k-face which is a simplex, and suppose that
Aut(P) acts transitively on the i-faces of P for
0 <i<n. Then X (the 1-skeleton of P) is a
(@0, - - -, @min(k,n)) -regular graph, where a; is
the number of simplicial (i + 1)-faces
containing a given i-face of P. Moreover, X is
(@0, - - - » @min(k,n)—1)-CONNected regular.




Coxeter systems

Definition

W= (S]|(st)"t =1forall s,t € S) where
ms € {1,2,...,00} forall s,t € S, and satisfy
mg = 1 ifand only if s = .

Related notions include Coxeter matrix,
Coxeter diagram and Coxeter group.

Tits '61: To a string Coxeter system (W, S)
one can associate a universal polytope Py
which is regular and for which Aut(Py) = W.



Geometric representation of a
Coxeter group

Definition

Set B(es, €t) = — cos(w/mgt). The geometric
representation of W on V = RS is defined by
s(v) =v —2B(v,es)es

@ Tits: this representation is faithful.
@ Image of W lies in orthogonal group Og.

@ The signature of (W, S) is defined to be
the signature of B.
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Wythoffian polytopes

@ They form a class of uniform polytopes,
i.e. AutP acts transitively on vertices,
and faces are inductively uniform.

@ Not all uniform polytopes are Wythoffian,
first counterexample: the grand
antiprism (Conway and Guy 1965).

@ Kaleidoscopic construction, for example
octahedron, cuboctahedron and cube.



Examples of Wythoffian polytopes

Cube foctahedron dual Wythoffian operations illustrated
with cube and octahedron

{with extended Schlifli and Coxeter-Dynkins symbols)
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Main result

Theorem

Let (W, S) be a Coxeter system, M a subset
of S and Pw um the associated Wythoffian
polytope. Suppose (W, S) is indefinite, Py m
has finite vertex links, and the 1-skeleton X
of Pw.m is (Qo, - . ., an)-regular. Then there
exists an infinite collection of finite quotients
of X by normal subgroups of W, which form
a family of (ao, . . ., an)-regular expander
graphs.




lllustrating the main theorem

@ (120,12,5,2)-regular expander graphs,
quotients of the 1-skeleton of the hyperbolic

tessellation with diagram o—e—e—e>e

@ (2160,64,21,10)-connected regular
expander graphs from Wythoffian polytope

with diagram

@ For each m > 10, family of
(2m-2, (m1Nm=2) 5(m — 3))-connected
regular expanders as quotients of the
polytope of type E,, with diagram

-—0



The order-5-4-simplex-honeycomb

The automorphism group of P is the Coxeter
group W with diagram S, (Hs).

Let o = 1Y% c R and let K = Q(y). Then
the matrix of B is

w.r.t. the canonical basis. B is equivalent
over Kto B'=(1,1,1,1, —¢). Hence
Op = Op as algebraic K-groups.



Two-sheeted hyperbola

@ {veR%|B(v,v)=—1} is preserved by Og.
Both sheets H and H~ are Minkowski
models for hyperbolic 4-space and
preserved by W.

@ Isom(H) = Of(R) = {g € Og(R) | gH = H}.

@ The images of {Sp, ..., Ss} of W lie in
0%(Ok). The hyperplane arrangement they
generate tessellates H by compact
4-simplices, and forms a geometric
representation of the Coxeter complex of W.



The geometry of P

@ The link L of a vertex of P is a
hexacosichoron (600-cell) and the link of an
edge of P is an icosahedron.

@ W is a cocompact lattice in Og(R), and by
Borel density W is Zariski-dense in Og(Ok).

@ W has finite index in Og(Ok) (Op(Ok) is a
discrete subgroup of Og(R) containing W).

@ String Coxeter diagram, and hence
(120,12, 5,2)-connected regular expanders.



Arbitrarily high regularity levels

For any m > 5 consider the Wythoffian
polytopes P, with diagram .ﬂ_;iktﬂg
The 1-skeleton X, of Ppis a
(B™),m?,2(m—1),m—-2,m—3,...,1)-
regular graph, that is, has regularity level
m+ 1. The link of any vertex in Pp, is an
m-rectified (2m — 1)-simplex, with diagram
Es o s , and the 1-skeleton of this
link is the Johnson graph J(2m, m).



lllustrating quasi-isometry

f: X — Y is a quasi-isometry if
3A>1,B>0,C > 0 such that

(i) Xd(x,x') — B < d(f(x),f(x")) < Ad(x,x") + B,
(iyVy € Y, 3x € X : d(f(x),y) < C.




From Cay(W, S) to Pw.m

Lemma

Let (W, S) be a Coxeter system and M a
subset of S. The 1-skeleton X of the
associated Wythoffian polytope Pw y and the
Cayley graph Cay(W, S) are quasi-isometric
if and only if Py u has finite vertex links. In
this case, the natural W-equivariant
surjection f : Cay(W, S) — X that sends a
chamber to the unique vertex of Py y it
contains is a nonexpansive quasi-isometry.




Comparing quotients

@ Assume Py u has finite vertex links.

@ 7y denotes the quotient map
W — W/N.

o Cay(W,S)/N = Cay(mn(W), 7n(S)).
@ fy: Q.l. with same constants as f, in

particular independent of N.

Cay(W,S) — I X

| |

Cay(mn(W). 7n(S)) —— X/N



Comparing regularity

@ Goal: X/N retains the regularity of X,

e Sufficient: X — X/N is injective on the
neighbourhood of any vertex of X and
creates no new triangles.

@ Action of N on X should have minimal
displacement (md) at least 4, thus action
of N on Cay(W, S) had md at least
5D+4,ie.l(n)>5D+4,Yn#1¢c N.

@ The elements in W whose lengths are
less than 5D + 4 form a finite set T.



Obtaining an infinite family

@ W is afinitely generated linear group,
hence residually finite (Malcev 1940).

@ Let {Nn}me/ be finite-index normal
subgroups of W closed under
intersection with (,,,c, Nm = {1}, and let
I'={mel| TnNp={1}}, so that
Nmer Nm = {1}. For m € I the graph
X/Nm has the same regularity as X.

@ If W is infinite then indices of the N, are
unbounded (f.g. groups only have finitely
many subgroups of a given finite index).



Expansion under quasi-isometry

Proposition

LetD>1andletf: Y — Zbea
D-quasi-isometry between two finite
connected graphs Y and Z. Then there exist
constants ¢, ¢’ > 0 depending only on the
quasi-isometry constants of f (or equivalently,
on D) and on the maximum degrees of Y and
Z, such that if h(Y) > e, then

h(Z) > min(ce, ¢’).




Transferring expander families

Corollary

Let {Ym}mey and{Zm}mey be two families of
graphs of bounded maximum degree,
indexed by a set J. Suppose that there is a
D-quasi-isometry fy, : Ym — Zn for every

m e J. Then{Ym}mey is a family of
expanders if and only if {Zm} mey IS.




Why do we need hyperbolic
Coxeter groups?

@ Since S is assumed to be finite, Wis a
discrete subgroup of Op(R).

@ Soif (W, S) is semidefinite
(resp. definite), then W is virtually
abelian (resp. finite).

@ Virtually abelian groups are amenable,
no hope for expansion phenomena in
(W, S) if it is semidefinite.



Superapproximation

Fix Np, go € Ng. For m coprime to qo, let
Tm = GLn, (Z[1/q0]) — GLny(Z/ MZ).

Theorem (Salehi-Golsefidy)

LetT = (S) where S = S=' C GLn,(Z[1/qo]).
Suppose that T is infinite. Fix My € N. The family
of Cayley graphs {Cay(wm(I'), 7m(S))}m, as m
runs through either {p" | n € N, p prime,p { qo} or
{meN|ged(m, qo)=1,p""" 1

m for any prime p}, is a family of expanders if and
only if the connected component G° of the
Zariski-closure G of I in GLy, is perfect.




Welil’s restriction of scalars

@ The entries of the matrix of 2B in the canonical
basis of V are algebraic integers, and so there
exists a number field K, with ring of integers Ok,
over which Og can be defined such that
W c OB(OK).

@ The restriction of scalars Resk/q(Og) is a linear
algebraic Q-group, and as such can be
embedded over Q in GLy, for some Np.

@ Let go be a lowest common denominator of the
entries of the image of S. Then
W C GLn, (Z[1/q0]). The Zariski-closure of W in
GLu, is the image of Resx o(OF’), which is
perfect since OF is perfect.



Proof of the Main result

@ {Cay(mm(W),7m(S))}m forms a family of
expanders for an appropriate family of m’s
(superapproximation).

@ fp: Cay(mm(W), mm(S)) — X/Nm with
constants depending only on (W, S).

@ {X/Nmn}mes form a family of expanders.
@ Let /' ={me l| X/Ny same regularity as X}.

@ The graphs {X/Npn}mer are
(ao, - - -, an)-regular, and form an infinite
family of expanders.



Two open problems

Problem A:

HRC,p(n) —— HRCo(n) —— HRC(n)

l l l

HR (1) —— HRoo(n) — HR(n)

Are any of these inclusions strict for n > 1?

Problem B: For n > 1 describe the above six
sets as subsets of N”.



Friedgut-lluz

@ Friedgut and lluz, obtained related
results (now on ArXiV).

@ They observed Hs leads
(120,12,5, 2)-regular graphs, and
Friedgut had presented this at MFO in
April 2019, but with no mention of the
expansion of those graphs.

@ They also have a method to show that
HRC,(n) and even HRC.,,(n) are
infinite.



