Constructing highly regular expanders from hyperbolic Coxeter groups

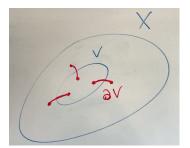
Jeroen Schillewaert (joint with Marston Conder, Alex Lubotzky and François Thilmany)

> Department of Mathematics University of Auckland

Expansion

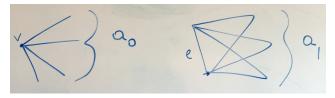
A finite graph X is an ϵ -expander, if $h(X) = \min_{\emptyset \subsetneq V \subsetneq X} \frac{|\partial V|}{\min(|V|, |X \setminus V|)}$

is at least ϵ . (∂V = edge-boundary of V).

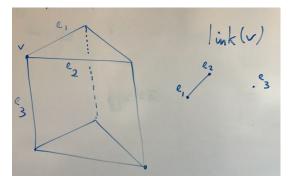


Regularity

X is (a_0, \ldots, a_{n-1}) -regular if *X* is a_0 -regular and for every *v* of *X*, the sphere of radius 1 around *v* is (a_1, \ldots, a_{n-1}) -regular. If $a_{n-1} \neq 0$, we say *X* is highly regular (HR) of level *n*.



Connectivity



If the links of an (HR) graph are connected we call it highly regular connected (HRC).

Chapman-Linial-Peled's question

- Chapman, Linial and Peled studied HR-expander graphs of level 2 and ask whether such HR-graphs of level 3 exist.
- We answer this question positively, also independently done by Friedgut-Iluz.
- Regularity and connectivity depend on the particular Coxeter diagrams.
- Expansion comes from superapproximation.

Polytopes and symmetry groups

Lemma

Let k be the largest integer for which \mathcal{P} has a k-face which is a simplex, and suppose that $\operatorname{Aut}(\mathcal{P})$ acts transitively on the i-faces of \mathcal{P} for $0 \leq i \leq n$. Then X (the 1-skeleton of \mathcal{P}) is a $(a_0, \ldots, a_{\min(k,n)})$ -regular graph, where a_i is the number of simplicial (i + 1)-faces containing a given i-face of \mathcal{P} . Moreover, X is $(a_0, \ldots, a_{\min(k,n)-1})$ -connected regular.

Coxeter systems

Definition

 $W = \langle S \mid (st)^{m_{st}} = 1 \text{ for all } s, t \in S \rangle$ where $m_{st} \in \{1, 2, \dots, \infty\}$ for all $s, t \in S$, and satisfy $m_{st} = 1$ if and only if s = t.

Related notions include Coxeter matrix, Coxeter diagram and Coxeter group.

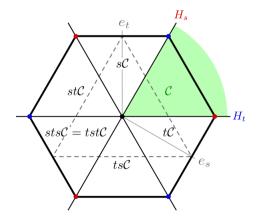
Tits '61: To a string Coxeter system (W, S) one can associate a universal polytope \mathcal{P}_W which is regular and for which $\operatorname{Aut}(\mathcal{P}_W) = W$. Geometric representation of a Coxeter group

Definition

Set $B(e_s, e_t) = -\cos(\pi/m_{st})$. The geometric representation of W on $V = \mathbb{R}^S$ is defined by $s(v) = v - 2B(v, e_s)e_s$

- Tits: this representation is faithful.
- Image of W lies in orthogonal group O_B.
- The *signature of* (*W*, *S*) is defined to be the signature of *B*.

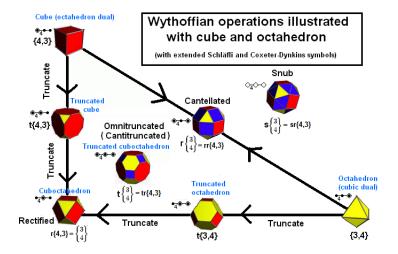
Geometric representation of A_2



Wythoffian polytopes

- They form a class of uniform polytopes,
 i.e. Aut*P* acts transitively on vertices,
 and faces are inductively uniform.
- Not all uniform polytopes are Wythoffian, first counterexample: the grand antiprism (Conway and Guy 1965).
- Kaleidoscopic construction, for example octahedron, cuboctahedron and cube.

Examples of Wythoffian polytopes



Main result

Theorem

Let (W, S) be a Coxeter system, M a subset of S and $\mathcal{P}_{W,M}$ the associated Wythoffian polytope. Suppose (W, S) is indefinite, $\mathcal{P}_{W,M}$ has finite vertex links, and the 1-skeleton X of $\mathcal{P}_{W,M}$ is (a_0, \ldots, a_n) -regular. Then there exists an infinite collection of finite quotients of X by normal subgroups of W, which form a family of (a_0, \ldots, a_n) -regular expander graphs.

Illustrating the main theorem

- (120, 12, 5, 2)-regular expander graphs, quotients of the 1-skeleton of the hyperbolic tessellation with diagram • • • • ⁵•
- (2160, 64, 21, 10)-connected regular
 expander graphs from Wythoffian polytope
 with diagram

• For each
$$m \ge 10$$
, family of $(2^{m-2}, \frac{(m-1)(m-2)}{2}, 2(m-3))$ -connected regular expanders as quotients of the polytope of type E_m with diagram

The order-5-4-simplex-honeycomb

Let $\varphi = \frac{1+\sqrt{5}}{2} \in \mathbb{R}$ and let $K = \mathbb{Q}(\varphi)$. Then the matrix of *B* is

$$\frac{1}{2} \begin{pmatrix} 2 & -1 & 0 & 0 & 0 \\ -1 & 2 & -1 & 0 & 0 \\ 0 & -1 & 2 & -1 & 0 \\ 0 & 0 & -1 & 2 & -\varphi \\ 0 & 0 & 0 & -\varphi & 2 \end{pmatrix}$$

w.r.t. the canonical basis. *B* is equivalent over *K* to $B' = \langle 1, 1, 1, 1, -\varphi \rangle$. Hence $O_B \cong O_{B'}$ as algebraic *K*-groups.

Two-sheeted hyperbola

- {v ∈ ℝ⁵ | B(v, v) = −1} is preserved by O_B. Both sheets H and H⁻ are Minkowski models for hyperbolic 4-space and preserved by W.
- Isom $(\mathcal{H}) = O_B^+(\mathbb{R}) = \{g \in O_B(\mathbb{R}) \mid g\mathcal{H} = \mathcal{H}\}.$
- The images of {s₀,..., s₄} of W lie in O⁺_B(O_K). The hyperplane arrangement they generate tessellates H by compact 4-simplices, and forms a geometric representation of the Coxeter complex of W.

The geometry of \mathcal{P}

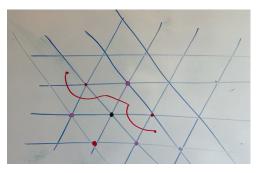
- The link L of a vertex of P is a hexacosichoron (600-cell) and the link of an edge of P is an icosahedron.
- W is a cocompact lattice in O_B(ℝ), and by Borel density W is Zariski-dense in O_B(O_K).
- W has finite index in O_B(O_K) (O_B(O_K) is a discrete subgroup of O_B(ℝ) containing W).
- String Coxeter diagram, and hence (120, 12, 5, 2)-connected regular expanders.

Arbitrarily high regularity levels

For any m > 5 consider the Wythoffian polytopes \mathcal{P}_m with diagram $\overset{m-1}{\bullet \bullet \bullet \bullet \bullet}$ The 1-skeleton X_m of \mathcal{P}_m is a $\binom{2m}{m}, m^2, 2(m-1), m-2, m-3, \ldots, 1)$ regular graph, that is, has regularity level m+1. The link of any vertex in \mathcal{P}_m is an *m*-rectified (2m-1)-simplex, with diagram $\stackrel{m-1}{\bullet}$ and the 1-skeleton of this link is the Johnson graph J(2m, m).

Illustrating quasi-isometry

$$\begin{array}{l} f: X \to Y \text{ is a quasi-isometry if} \\ \exists A \ge 1, B \ge 0, C \ge 0 \text{ such that} \\ \text{(i) } \frac{1}{A}d(x, x') - B \le d(f(x), f(x')) \le Ad(x, x') + B, \\ \text{(ii) } \forall y \in Y, \ \exists x \in X : d(f(x), y) \le C. \end{array}$$



From Cay(W, S) to $\mathcal{P}_{W,M}$

Lemma

Let (W, S) be a Coxeter system and M a subset of S. The 1-skeleton X of the associated Wythoffian polytope $\mathcal{P}_{W,M}$ and the Cayley graph Cay(W, S) are guasi-isometric if and only if $\mathcal{P}_{W,M}$ has finite vertex links. In this case, the natural W-equivariant surjection $f : Cay(W, S) \rightarrow X$ that sends a chamber to the unique vertex of $\mathcal{P}_{W,M}$ it contains is a nonexpansive quasi-isometry.

Comparing quotients

- Assume $\mathcal{P}_{W,M}$ has finite vertex links.
- π_N denotes the quotient map $W \to W/N$.
- $\operatorname{Cay}(W, S)/N \cong \operatorname{Cay}(\pi_N(W), \pi_N(S)).$
- *f_N*: Q.I. with same constants as *f*, in particular independent of *N*.

$$\begin{array}{ccc} \operatorname{Cay}(W, \mathcal{S}) & & \stackrel{f}{\longrightarrow} & X \\ & & & & \downarrow \\ & & & & \downarrow \\ \operatorname{Cay}(\pi_N(W), \pi_N(\mathcal{S})) & & \xrightarrow{f_N} & X/N \end{array}$$

Comparing regularity

- Goal: *X*/*N* retains the regularity of *X*,
- Sufficient: X → X/N is injective on the neighbourhood of any vertex of X and creates no new triangles.
- Action of *N* on *X* should have minimal displacement (md) at least 4, thus action of *N* on Cay(*W*, *S*) had md at least 5*D* + 4, i.e. *l*(*n*) ≥ 5*D* + 4, ∀*n* ≠ 1 ∈ *N*.
- The elements in W whose lengths are less than 5D + 4 form a finite set T.

Obtaining an infinite family

- *W* is a finitely generated linear group, hence residually finite (Malcev 1940).
- Let {N_m}_{m∈I} be finite-index normal subgroups of W closed under intersection with ∩_{m∈I} N_m = {1}, and let I' = {m ∈ I | T ∩ N_m = {1}}, so that ∩_{m∈I'} N_m = {1}. For m ∈ I' the graph X/N_m has the same regularity as X.
- If W is infinite then indices of the N_m are unbounded (f.g. groups only have finitely many subgroups of a given finite index).

Expansion under quasi-isometry

Proposition

Let $D \ge 1$ and let $f : Y \to Z$ be a *D*-quasi-isometry between two finite connected graphs *Y* and *Z*. Then there exist constants *c*, c' > 0 depending only on the quasi-isometry constants of *f* (or equivalently, on *D*) and on the maximum degrees of *Y* and *Z*, such that if $h(Y) \ge \epsilon$, then $h(Z) \ge \min(c\epsilon, c')$.

Transferring expander families

Corollary

Let $\{Y_m\}_{m\in J}$ and $\{Z_m\}_{m\in J}$ be two families of graphs of bounded maximum degree, indexed by a set J. Suppose that there is a D-quasi-isometry $f_m : Y_m \to Z_m$ for every $m \in J$. Then $\{Y_m\}_{m\in J}$ is a family of expanders if and only if $\{Z_m\}_{m\in J}$ is.

Why do we need hyperbolic Coxeter groups?

- Since S is assumed to be finite, W is a discrete subgroup of O_B(ℝ).
- So if (W, S) is semidefinite (resp. definite), then W is virtually abelian (resp. finite).
- Virtually abelian groups are amenable, no hope for expansion phenomena in (W, S) if it is semidefinite.

Superapproximation

Fix $N_0, q_0 \in \mathbb{N}_0$. For *m* coprime to q_0 , let $\pi_m = \operatorname{GL}_{N_0}(\mathbb{Z}[1/q_0]) \to \operatorname{GL}_{N_0}(\mathbb{Z}/m\mathbb{Z})$.

Theorem (Salehi-Golsefidy)

Let $\Gamma = \langle S \rangle$ where $S = S^{-1} \subset GL_{N_0}(\mathbb{Z}[1/q_0])$. Suppose that Γ is infinite. Fix $M_0 \in \mathbb{N}$. The family of Cayley graphs $\{Cay(\pi_m(\Gamma), \pi_m(S))\}_m$, as m runs through either $\{p^n \mid n \in \mathbb{N}, p \text{ prime}, p \nmid q_0\}$ or $\{m \in \mathbb{N} \mid gcd(m, q_0) = 1, p^{M_0+1} \nmid$ m for any prime $p\}$, is a family of expanders if and only if the connected component G° of the Zariski-closure G of Γ in GL_{N_0} is perfect.

Weil's restriction of scalars

- The entries of the matrix of 2B in the canonical basis of V are algebraic integers, and so there exists a number field K, with ring of integers O_K, over which O_B can be defined such that W ⊂ O_B(O_K).
- The restriction of scalars Res_{K/Q}(O_B) is a linear algebraic Q-group, and as such can be embedded over Q in GL_{N₀} for some N₀.
- Let q₀ be a lowest common denominator of the entries of the image of *S*. Then
 W ⊂ GL_{N0}(ℤ[1/q₀]). The Zariski-closure of *W* in GL_{N0} is the image of Res_{K/ℚ}(O^{1◦}_B), which is perfect since O^{1◦}_B is perfect.

Proof of the Main result

- {Cay(π_m(W), π_m(S))}_m forms a family of expanders for an appropriate family of m's (superapproximation).
- *f_m* : Cay(π_m(W), π_m(S)) → X/N_m with constants depending only on (W, S).
- $\{X/N_m\}_{m \in I}$ form a family of expanders.
- Let $I' = \{m \in I \mid X/N_m \text{ same regularity as } X\}$.
- The graphs {X/N_m}_{m∈I'} are (a₀,..., a_n)-regular, and form an infinite family of expanders.

Two open problems

Problem A:

Are any of these inclusions strict for n > 1?

Problem B: For n > 1 describe the above six sets as subsets of \mathbb{N}^n .

Friedgut-Iluz

- Friedgut and Iluz, obtained related results (now on ArXiV).
- They observed H₅ leads (120, 12, 5, 2)-regular graphs, and Friedgut had presented this at MFO in April 2019, but with no mention of the expansion of those graphs.
- They also have a method to show that HRC_∞(n) and even HRC_{exp}(n) are infinite.