The least Euclidean distortion constant of a distance-regular graph

Himanshu Gupta

joint work with Sebastian Cioabă, Ferdinand Ihringer, and Hirotake Kurihara

Department of Mathematical Sciences University of Delaware sites.udel.edu/himanshu himanshu@udel.edu

Algebraic Graph Theory International Webinar November 15, 2022

Definition

An *embedding* of G = (V, E) into \mathbb{R}^m is an injective function $\rho : V \to \mathbb{R}^m$.

Definition

An *embedding* of G = (V, E) into \mathbb{R}^m is an injective function $\rho : V \to \mathbb{R}^m$.

• expansion(
$$\rho$$
) := $\max_{x,y \in V} \frac{||\rho(x) - \rho(y)||_2}{d(x,y)}$.
• contraction(ρ) := $\max_{x,y \in V} \frac{d(x,y)}{||\rho(x) - \rho(y)||_2}$.

Definition

An *embedding* of G = (V, E) into \mathbb{R}^m is an injective function $\rho : V \to \mathbb{R}^m$.

• expansion(
$$\rho$$
) := $\max_{x,y \in V} \frac{||\rho(x) - \rho(y)||_2}{d(x,y)}$.
• contraction(ρ) := $\max_{x,y \in V} \frac{d(x,y)}{||\rho(x) - \rho(y)||_2}$.

Definition

An *embedding* of G = (V, E) into \mathbb{R}^m is an injective function $\rho : V \to \mathbb{R}^m$.

• expansion(
$$\rho$$
) := $\max_{x,y \in V} \frac{||\rho(x) - \rho(y)||_2}{d(x,y)}$.
• contraction(ρ) := $\max_{x,y \in V} \frac{d(x,y)}{||\rho(x) - \rho(y)||_2}$.

Definition

An *embedding* of G = (V, E) into \mathbb{R}^m is an injective function $\rho : V \to \mathbb{R}^m$.

• expansion(
$$\rho$$
) := $\max_{x,y \in V} \frac{||\rho(x) - \rho(y)||_2}{d(x,y)}$.
• contraction(ρ) := $\max_{x,y \in V} \frac{d(x,y)}{||\rho(x) - \rho(y)||_2}$.

Definition

$$c_2(G) := \min_{\rho: V \to \mathbb{R}^m} \{ \operatorname{dist}(\rho) \}$$

Definition

$$c_2(G) := \min_{\rho: V \to \mathbb{R}^m} {\operatorname{dist}(\rho)}$$

•
$$V(Q_d) = \mathbb{Z}_2^d$$
, $x = (x_i) \sim y = (y_i) \iff |\{i : x_i \neq y_i\}| = 1$.

Definition

$$c_2(G) := \min_{
ho: V o \mathbb{R}^m} \{ \operatorname{dist}(
ho) \}$$

•
$$V(Q_d) = \mathbb{Z}_2^d$$
, $x = (x_i) \sim y = (y_i) \iff |\{i : x_i \neq y_i\}| = 1$.
• $\rho : V(Q_d) \rightarrow \mathbb{R}^d$ $(x_1, \dots, x_d) \mapsto [x_1, \dots, x_d]^T$.

Definition

$$c_2(G) := \min_{\rho: V \to \mathbb{R}^m} \{ \operatorname{dist}(\rho) \}$$

•
$$V(Q_d) = \mathbb{Z}_2^d$$
, $x = (x_i) \sim y = (y_i) \iff |\{i : x_i \neq y_i\}| = 1$.
• $\rho : V(Q_d) \rightarrow \mathbb{R}^d$ $(x_1, \dots, x_d) \mapsto [x_1, \dots, x_d]^T$.

Definition

The least distortion of G is defined as

$$c_2(G) := \min_{
ho: V o \mathbb{R}^m} \{ \operatorname{dist}(
ho) \}$$

•
$$V(Q_d) = \mathbb{Z}_2^d$$
, $x = (x_i) \sim y = (y_i) \iff |\{i : x_i \neq y_i\}| = 1$.
• $\rho : V(Q_d) \rightarrow \mathbb{R}^d$ $(x_1, \dots, x_d) \mapsto [x_1, \dots, x_d]^T$.

 $c_2(Q_3) \leq \sqrt{3}$

Enflo 1969, Linial and Magen 2000, Vallentin 2008.

• ρ is an optimal embedding and $c_2(Q_d) = \sqrt{d}$.

Grand ancestor of finite metric embedding

Bourgain 1985

Every metric space with n points can be embedded into Euclidean space with distortion $O(\log n)$.

Grand ancestor of finite metric embedding

Bourgain 1985

Every metric space with n points can be embedded into Euclidean space with distortion $O(\log n)$.

Linial, London, Rabinovich 1995, Matousek 1997

The bound above is tight and can be attained by the graph metric of expander graphs.

Equivalent formulation

Definition

$$c_2(G) = \min_{\rho} \{ \operatorname{dist}(\rho) \} = \min_{\rho} \{ \exp(\rho) \cdot \operatorname{cont}(\rho) \},$$

where $\exp(\rho) = \max_{x,y} \frac{||\rho(x) - \rho(y)||_2}{d(x,y)}$ and $\operatorname{cont}(\rho) = \max_{x,y} \frac{d(x,y)}{||\rho(x) - \rho(y)||_2}.$

Equivalent formulation

Definition

$$c_{2}(G) = \min_{\rho} \{ \operatorname{dist}(\rho) \} = \min_{\rho} \{ \exp(\rho) \cdot \operatorname{cont}(\rho) \},$$

where $\exp(\rho) = \max_{x,y} \frac{||\rho(x) - \rho(y)||_{2}}{d(x,y)}$ and $\operatorname{cont}(\rho) = \max_{x,y} \frac{d(x,y)}{||\rho(x) - \rho(y)||_{2}}.$

Note: A matrix Q is positive semidefinite $\iff Q = UU^T$ for a matrix U.

Equivalent formulation

Definition

$$c_2(G) = \min_{\rho} \{ \operatorname{dist}(\rho) \} = \min_{\rho} \{ \exp(\rho) \cdot \operatorname{cont}(\rho) \},$$

where $\exp(\rho) = \max_{x,y} \frac{||\rho(x) - \rho(y)||_2}{d(x,y)}$ and $\operatorname{cont}(\rho) = \max_{x,y} \frac{d(x,y)}{||\rho(x) - \rho(y)||_2}.$

Note: A matrix Q is positive semidefinite $\iff Q = UU^T$ for a matrix U.

Semidefinite programming and Duality

Linial, London, Rabinovich 1995 $c_2(G) = C$, where,

minimize C^2 , subject to $Q = (q_{x,y})_{x,y \in V}$ is positive semi definite, $d(x,y)^2 \le q_{x,x} + q_{y,y} - 2q_{x,y} \le C^2 \cdot d(x,y)^2, \forall x, y \in V.$

Semidefinite programming and Duality

Linial, London, Rabinovich 1995 $c_2(G) = C$, where,

minimize
$$C^2$$
,
subject to $Q = (q_{x,y})_{x,y \in V}$ is positive semi definite,
 $d(x,y)^2 \le q_{x,x} + q_{y,y} - 2q_{x,y} \le C^2 \cdot d(x,y)^2, \forall x, y \in V.$

Linial, London, Rabinovich 1995

Let $\mathcal{O}_n := \{Q | Q \text{ is } n \times n \text{ PSD and } Q\vec{1} = \vec{0}\}.$

 $c_2(G) \leq C$

$$\Longleftrightarrow orall Q \in \mathcal{O}_n: \sum_{q_{x,y}>0} d^2(x,y)q_{x,y} + C^2 \sum_{q_{x,y}<0} d^2(x,y)q_{x,y} \leq 0.$$

The least distortion $c_2(G)$

Linial, London, Rabinovich 1995

$$c_2(G) = \max_{Q \in \mathcal{O}_n} \delta(Q),$$

where

$$\delta(Q) = \sqrt{\frac{\sum_{q_{x,y}>0} d^2(x,y) q_{x,y}}{\sum_{q_{x,y}<0} d^2(x,y) (-q_{x,y})}}$$

The least distortion $c_2(G)$

Linial, London, Rabinovich 1995

$$c_2(G) = \max_{Q \in \mathcal{O}_n} \delta(Q),$$

where

$$\delta(Q) = \sqrt{\frac{\sum_{q_{x,y}>0} d^2(x,y) q_{x,y}}{\sum_{q_{x,y}<0} d^2(x,y) (-q_{x,y})}}.$$

$$\max_{Q\in\mathcal{O}_n} \{\delta(Q)\} = c_2(G) = \min_{\rho} \{\operatorname{dist}(\rho)\}$$

- Any $Q \in \mathcal{O}_n$ provides a lower bound on $c_2(G)$.
- Any embedding ρ provides an upper bound on $c_2(G)$.

• G = (V, E): a finite connected graph of diameter d.

- G = (V, E): a finite connected graph of diameter d.
- $\Gamma_i(x) = \{y | d(x, y) = i\}$: the *i*th**subconstituent** w.r.t. *x*.

- G = (V, E): a finite connected graph of diameter d.
- $\Gamma_i(x) = \{y | d(x, y) = i\}$: the *i*thsubconstituent w.r.t. x.
- G: distance-regular

. .

$$\stackrel{\scriptscriptstyle{\mathsf{det}}}{\Longleftrightarrow} \exists a_i, b_i, c_i \ (i=0,1,\ldots,d) \ \mathsf{s.t.} \ \forall x,y \in V \ \mathsf{with} \ d(x,y)=i:$$

- G = (V, E): a finite connected graph of diameter d.
- $\Gamma_i(x) = \{y | d(x, y) = i\}$: the *i*th**subconstituent** w.r.t. *x*.
- G: distance-regular

. .

$$\stackrel{\scriptscriptstyle{\mathsf{det}}}{\Longleftrightarrow} \exists a_i, b_i, c_i \ (i=0,1,\ldots,d) \ \mathsf{s.t.} \ \forall x,y \in V \ \mathsf{with} \ d(x,y)=i:$$

• G is regular of valency $k = b_0$ and $a_i + b_i + c_i = k$.

- G = (V, E): a finite connected graph of diameter d.
- $\Gamma_i(x) = \{y | d(x, y) = i\}$: the *i*thsubconstituent w.r.t. x.
- G: distance-regular

$$\stackrel{\text{\tiny def}}{\Longleftrightarrow} \exists a_i, b_i, c_i \ (i = 0, 1, \dots, d) \text{ s.t. } \forall x, y \in V \text{ with } d(x, y) = i:$$

- G is regular of valency $k = b_0$ and $a_i + b_i + c_i = k$.
- $i(G) = \{b_0, b_1, \dots, b_{d-1}; c_1, c_2, \dots, c_d\}$: the intersection array of G

• The Petersen graph

 $i(G) = \{3, 2; 1, 1\}$

• The Petersen graph

 $i(G) = \{3, 2; 1, 1\}$

• Distance-regular graphs of diameter 2 are called strongly regular.

The Hamming graph H(n, d)

•
$$V = \mathbb{Z}_n^d$$

• $x = (x_i) \sim y = (y_i) \iff |\{i : x_i \neq y_i\}| = 1$

•
$$b_i = (d - i)(n - 1), c_i = i (i = 0, 1, ..., d)$$

The Hamming graph H(n, d)

•
$$\mathbf{v} = \omega_n$$

• $\mathbf{x} = (\mathbf{x}_i) \sim \mathbf{y} = (\mathbf{y}_i) \iff |\{i : \mathbf{x}_i \neq \mathbf{y}_i\}| = 1$
• $b_i = (d-i)(n-1), \ c_i = i \ (i = 0, 1, \dots, d)$

The Johnson graph J(n, d)

• V _ 7d

• $V = {[n] \choose d}$ • $x \sim y \stackrel{\text{def}}{\iff} |x \cap y| = d - 1$ • $b_i = (d - i)(n - d - i), c_i = i^2$ $(i = 0, 1, \dots, d)$ $\{1, 3\} \qquad \{1, 2\} \qquad \{1, 4\} \qquad \{2, 4\} \qquad \{3, 4\}$

$$i(J(4,2)) = \{4,1;1,4\}$$

Distance Matrices

$$A_i$$
 is the distance *i* matrix of $G \stackrel{\text{\tiny def}}{\longleftrightarrow} (A_i)_{xy} = \begin{cases} 1, & \text{if } d(x, y) = i \\ 0, & \text{otherwise.} \end{cases}$

Distance Matrices

$$A_i$$
 is the distance *i* matrix of $G \stackrel{\text{\tiny def}}{\longleftrightarrow} (A_i)_{xy} = \begin{cases} 1, & \text{if } d(x, y) = i \\ 0, & \text{otherwise.} \end{cases}$

 A_i is the adjacency matrix of **distance**-*i* graph G_i of G.

Distance Matrices

$$A_i$$
 is the distance *i* matrix of $G \stackrel{\text{def}}{\iff} (A_i)_{xy} = \begin{cases} 1, & \text{if } d(x,y) = i \\ 0, & \text{otherwise.} \end{cases}$

 A_i is the adjacency matrix of **distance**-*i* graph G_i of G.

Combinatorial definition:

In terms of matrices:

$$A_{1}A_{i} = c_{i+1}A_{i+1} + a_{i}A_{i} + b_{i-1}A_{i-1}$$

$$\implies A_{i} = v_{i}(A_{1}),$$

$$v_{0}(x) = 1, v_{1}(x) = x \text{ and}$$

$$x \cdot v_{i}(x) = c_{i+1}v_{i+1}(x) + a_{i}v_{i}(x) + b_{i-1}v_{i-1}(x).$$

• $\mathcal{A} = \mathbb{R}[A]$: the adjacency algebra of G.

- $\mathcal{A} = \mathbb{R}[A]$: the adjacency algebra of G.
 - First Basis: $\{I, A, A^2, \cdots, A^d\}$
 - Second Basis: $\{I, A_1, A_2, \cdots, A_d\}$

- $\mathcal{A} = \mathbb{R}[A]$: the adjacency algebra of G.
 - First Basis: $\{I, A, A^2, \cdots, A^d\}$
 - Second Basis: $\{I, A_1, A_2, \cdots, A_d\}$
- The adjacency matrix of G has d + 1 distinct eigenvalues:

$$k=\theta_0>\theta_1>\ldots>\theta_d.$$

- $\mathcal{A} = \mathbb{R}[A]$: the adjacency algebra of G.
 - First Basis: $\{I, A, A^2, \cdots, A^d\}$
 - Second Basis: $\{I, A_1, A_2, \cdots, A_d\}$
- The adjacency matrix of G has d + 1 distinct eigenvalues:

$$k=\theta_0>\theta_1>\ldots>\theta_d.$$

• They are the eigenvalues of the following matrix:

$$L = \begin{bmatrix} a_0 & b_0 & 0 & \dots & 0 \\ c_1 & a_1 & b_1 & 0 & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \dots & c_{d-1} & a_{d-1} & b_{d-1} \\ 0 & \dots & \dots & c_d & a_d \end{bmatrix}$$
Eigenmatrix of a distance-regular graph

Recall: $A_i = v_i(A_1)$

Eigenmatrix of a distance-regular graph

Recall: $A_i = v_i(A_1)$

Where $k_i := v_i(k)$ is the degree of the distance *i* graph G_i .

Vallentin 2008

If G is a drg with diameter d and eigenvalues $k > \theta_1 > \ldots > \theta_d$, then

$$c_2(G)^2 \geq \frac{d^2 v_d(k)}{k} \min_{1 \leq j \leq d} \left\{ \frac{k - \theta_j}{v_d(k) - v_d(\theta_j)} \right\}$$

Vallentin 2008

If G is a drg with diameter d and eigenvalues $k > \theta_1 > \ldots > \theta_d$, then

$$c_2(G)^2 \geq rac{d^2 v_d(k)}{k} \min_{1 \leq j \leq d} \left\{ rac{k - heta_j}{v_d(k) - v_d(heta_j)}
ight\}.$$

$$\max_{Q\in\mathcal{O}_n}\{\delta(Q)\}=c_2(G)$$

Himanshu Gupta

Vallentin 2008

If G is a drg with diameter d and eigenvalues $k > \theta_1 > \ldots > \theta_d$, then

$$c_2(G)^2 \geq rac{d^2 v_d(k)}{k} \min_{1 \leq j \leq d} \left\{ rac{k - heta_j}{v_d(k) - v_d(heta_j)}
ight\}.$$

Proof

•
$$Q := (k - \alpha \cdot v_d(k))I - A + \alpha A_d, \ \alpha = \min_{1 \le j \le d} \left\{ \frac{k - \theta_j}{v_d(k) - v_d(\theta_j)} \right\}.$$

 $\max_{Q \in \mathcal{O}_n} \{\delta(Q)\} = c_2(G)$ Himanshu Gupta Least Distortion distance-regular graphs

Vallentin 2008

If G is a drg with diameter d and eigenvalues $k > \theta_1 > \ldots > \theta_d$, then

$$c_2(G)^2 \geq rac{d^2 v_d(k)}{k} \min_{1 \leq j \leq d} \left\{ rac{k - heta_j}{v_d(k) - v_d(heta_j)}
ight\}.$$

Proof

•
$$Q := (k - \alpha \cdot v_d(k))I - A + \alpha A_d, \ \alpha = \min_{1 \le j \le d} \left\{ \frac{k - \theta_j}{v_d(k) - v_d(\theta_j)} \right\}.$$

• Then
$$Q\vec{1} = \vec{0}$$
 and Q is PSD

 $\max_{Q \in \mathcal{O}_n} \{ \delta(Q) \} = c_2(G)$ Himanshu Gupta

Vallentin 2008

If G is a drg with diameter d and eigenvalues $k > heta_1 > \ldots > heta_d$, then

$$c_2(G)^2 \geq rac{d^2 v_d(k)}{k} \min_{1 \leq j \leq d} \left\{ rac{k - heta_j}{v_d(k) - v_d(heta_j)}
ight\}.$$

Proof

•
$$Q := (k - \alpha \cdot v_d(k))I - A + \alpha A_d, \ \alpha = \min_{1 \le j \le d} \left\{ \frac{k - \theta_j}{v_d(k) - v_d(\theta_j)} \right\}.$$

• Then
$$Q\vec{1} = \vec{0}$$
 and Q is PSD
 $\sum d^2(x, y) dy y$

•
$$c_2(G)^2 \ge \frac{\sum q_{x,y} > 0}{\sum q_{x,y} < 0} \frac{d^2(x,y) q_{x,y}}{d^2(x,y)(-q_{x,y})} = \frac{d^2 v_d(x)}{k} \alpha.$$

 $\max_{Q \in \mathcal{O}_n} \{ \delta(Q) \} = c_2(G)$ Himanshu Gupta $d^2 u(k)$

Vallentin 2008

If G is a drg with diameter d and eigenvalues $k > \theta_1 > \ldots > \theta_d$, then

$$c_2(G)^2 \geq rac{d^2 v_d(k)}{k} \min_{1 \leq j \leq d} \left\{ rac{k - heta_j}{v_d(k) - v_d(heta_j)}
ight\}.$$

This lower bound is tight for all

- **1** Hamming graphs, $c_2(H(n,d)) = \sqrt{d}$, $(x_1, \cdots, x_d) \rightarrow (e_{x_1}, \cdots, e_{x_d}) \in \mathbb{R}^{nd}$.
- 3 Johnson graphs, $c_2(J(n,d)) = \sqrt{d}$, $A \to \sum_{x \in A} e_x \in \mathbb{R}^n$.
- Strongly regular graphs, $c_2(G) = 2\sqrt{1 + \frac{1}{s}}$, where s is the negative eigenvalue of G.

 $c_2(G) = \min_{\rho} \{ \operatorname{dist}(\rho) \}$ Himanshu Gupta

Vallentin 2008

If G is a drg with diameter d and eigenvalues $k > \theta_1 > \ldots > \theta_d$, then

$$c_2(G)^2 \geq rac{d^2 v_d(k)}{k} \min_{1 \leq j \leq d} \left\{ rac{k - heta_j}{v_d(k) - v_d(heta_j)}
ight\}.$$

Conjecture (Vallentin 2008)

The lower bound above is tight for all drgs.

Vallentin 2008

If G is a drg with diameter d and eigenvalues $k > \theta_1 > \ldots > \theta_d$, then

$$c_2(G)^2 \geq rac{d^2 v_d(k)}{k} \min_{1 \leq j \leq d} \left\{ rac{k - heta_j}{v_d(k) - v_d(heta_j)}
ight\}.$$

Conjecture (Vallentin 2008)

The lower bound above is tight for all drgs.

Cioabă, G., Ihringer and Kurihara 2022+

- The conjecture is not true in general.
- ② The conjecture is true for several families of drgs.

If G is a drg with eigenvalues $k > \theta_1 > \ldots > \theta_d$, then for any $1 \le r \le d$,

$$c_2(G)^2 \geq rac{r^2 v_r(k)}{k} \min_{1 \leq j \leq d} \left\{ rac{k - heta_j}{v_r(k) - v_r(heta_j)}
ight\}$$

If G is a drg with eigenvalues $k > \theta_1 > \ldots > \theta_d$, then for any $1 \le r \le d$,

$$c_2(G)^2 \geq rac{r^2 v_r(k)}{k} \min_{1 \leq j \leq d} \left\{ rac{k - heta_j}{v_r(k) - v_r(heta_j)}
ight\}.$$

$$\max_{Q\in\mathcal{O}_n}\{\delta(Q)\}=c_2(G)$$

Himanshu Gupta

If G is a drg with eigenvalues $k > \theta_1 > \ldots > \theta_d$, then for any $1 \le r \le d$,

$$c_2(G)^2 \geq \frac{r^2 v_r(k)}{k} \min_{1 \leq j \leq d} \left\{ \frac{k - \theta_j}{v_r(k) - v_r(\theta_j)} \right\}.$$

Proof

•
$$Q_r := (k - \beta \cdot v_r(k))I - A + \beta A_r$$
, where $\beta = \min_{1 \le j \le d} \left\{ \frac{k - \theta_j}{v_r(k) - v_r(\theta_j)} \right\}$.

 $\max_{Q \in \mathcal{O}_n} \{ \delta(Q) \} = c_2(G)$ Himanshu Gupta Least D

If G is a drg with eigenvalues $k > \theta_1 > \ldots > \theta_d$, then for any $1 \le r \le d$,

$$c_2(G)^2 \geq \frac{r^2 v_r(k)}{k} \min_{1 \leq j \leq d} \left\{ \frac{k - \theta_j}{v_r(k) - v_r(\theta_j)} \right\}.$$

Proof

•
$$Q_r := (k - \beta \cdot v_r(k))I - A + \beta A_r$$
, where $\beta = \min_{1 \le j \le d} \left\{ \frac{k - \theta_j}{v_r(k) - v_r(\theta_j)} \right\}$.
• Then $Q_r \vec{1} = \vec{0}$ and Q_r is PSD

 $\max_{Q \in \mathcal{O}_n} \{\delta(Q)\} = c_2(G)$ Himanshu Gupta

If G is a drg with eigenvalues $k > \theta_1 > \ldots > \theta_d$, then for any $1 \le r \le d$,

$$c_2(G)^2 \geq rac{r^2 v_r(k)}{k} \min_{1 \leq j \leq d} \left\{ rac{k - heta_j}{v_r(k) - v_r(heta_j)}
ight\}.$$

Proof

•
$$Q_r := (k - \beta \cdot v_r(k))I - A + \beta A_r$$
, where $\beta = \min_{1 \le j \le d} \left\{ \frac{k - \theta_j}{v_r(k) - v_r(\theta_j)} \right\}$.

• Then $Q_r \vec{1} = \vec{0}$ and Q_r is PSD.

•
$$c_2(G)^2 \ge \frac{\sum_{q_{x,y}>0} d^2(x,y)q_{x,y}}{\sum_{q_{x,y}<0} d^2(x,y)(-q_{x,y})} = \frac{r^2 v_r(k)}{k}\beta.$$

 $\max_{Q \in \mathcal{O}_n} \{ \delta(Q) \} = c_2(G)$ Himanshu Gupta

Counterexamples to Vallentin's Conjecture

•
$$c_2(G)^2 \ge \frac{d^2 v_d(k)}{k} \min_{1 \le j \le d} \left\{ \frac{k - \theta_j}{v_d(k) - v_d(\theta_j)} \right\}$$
. [Vallentin 2008]
• $c_2(G)^2 \ge \frac{(d-1)^2 v_{d-1}(k)}{k} \min_{1 \le j \le d} \left\{ \frac{k - \theta_j}{v_{d-1}(k) - v_{d-1}(\theta_j)} \right\}$.

Hadamard graphs

A Hadamard graph is a distance-regular graph with intersection array $\{2\mu, 2\mu - 1, \mu, 1; 1, \mu, 2\mu - 1, 2\mu\}$, where $\mu \ge 2$ an even number.

Computing the bounds above

1
$$\frac{8(\sqrt{2\mu}-1)}{\sqrt{2\mu}}$$
. [Vallentin 2008]
2 $\frac{9(\sqrt{2\mu}-1)}{\sqrt{2\mu}+1}$.

When $\mu \ge 34$, $\frac{9(\sqrt{2\mu}-1)}{\sqrt{2\mu}+1} > \frac{8(\sqrt{2\mu}-1)}{\sqrt{2\mu}}$.

Graph representation

For an eigenvalue θ , let U_{θ} be a $n \times m$ matrix whose columns form an orthonormal basis for the eigenspace of θ . For $1 \leq x \leq d$, let $u_{\theta}(x)$ denote the x-th row of U_{θ} .

Graph representation

For an eigenvalue θ , let U_{θ} be a $n \times m$ matrix whose columns form an orthonormal basis for the eigenspace of θ . For $1 \leq x \leq d$, let $u_{\theta}(x)$ denote the x-th row of U_{θ} .

•
$$AU_{\theta} = \theta U_{\theta} \Rightarrow \sum_{z \sim y} u_{\theta}(z) = \theta u_{\theta}(y).$$

Graph representation

For an eigenvalue θ , let U_{θ} be a $n \times m$ matrix whose columns form an orthonormal basis for the eigenspace of θ . For $1 \leq x \leq d$, let $u_{\theta}(x)$ denote the x-th row of U_{θ} .

• For drgs $\langle u_{\theta}(x), u_{\theta}(y) \rangle$ only depends on d(x, y).

Graph representation

For an eigenvalue θ , let U_{θ} be a $n \times m$ matrix whose columns form an orthonormal basis for the eigenspace of θ . For $1 \leq x \leq d$, let $u_{\theta}(x)$ denote the x-th row of U_{θ} .

- For drgs $\langle u_{\theta}(x), u_{\theta}(y) \rangle$ only depends on d(x, y).
- If d(x, y) = r, the *r*-th cosine w.r.t. θ is defined as

$$w_r(heta) := rac{\langle u_ heta(x), u_ heta(y)
angle}{\langle u_ heta(x), u_ heta(x)
angle}.$$

Graph representation

For an eigenvalue θ , let U_{θ} be a $n \times m$ matrix whose columns form an orthonormal basis for the eigenspace of θ . For $1 \leq x \leq d$, let $u_{\theta}(x)$ denote the x-th row of U_{θ} .

- For drgs $\langle u_{\theta}(x), u_{\theta}(y) \rangle$ only depends on d(x, y).
- If d(x, y) = r, the *r*-th cosine w.r.t. θ is defined as

$$w_r(heta) := rac{\langle u_ heta(x), u_ heta(y)
angle}{\langle u_ heta(x), u_ heta(x)
angle}.$$

•
$$\theta \cdot w_r(\theta) = c_r w_{r-1}(\theta) + a_r w_r(\theta) + b_r w_{r+1}(\theta).$$

1

Graph representation

For an eigenvalue θ , let U_{θ} be a $n \times m$ matrix whose columns form an orthonormal basis for the eigenspace of θ . For $1 \leq x \leq d$, let $u_{\theta}(x)$ denote the x-th row of U_{θ} .

- For drgs $\langle u_{\theta}(x), u_{\theta}(y) \rangle$ only depends on d(x, y).
- If d(x, y) = r, the *r*-th cosine w.r.t. θ is defined as

$$w_r(heta) := rac{\langle u_ heta(x), u_ heta(y)
angle}{\langle u_ heta(x), u_ heta(x)
angle}.$$

1

Two interpretations of the cosine sequences

•
$$w_r(\theta) = \frac{v_r(\theta)}{v_r(k)}$$

$$M_0 = \begin{pmatrix} A_1 & A_2 & \cdots & A_{d-1} & A_d \\ 1 & 1 & 1 & \cdots & 1 & 1 \\ 1 & \theta_1/k & w_2(\theta_1) & \cdots & w_{d-1}(\theta_1) & w_d(\theta_1) \\ 1 & \theta_2/k & w_2(\theta_2) & \cdots & w_{d-1}(\theta_2) & w_d(\theta_2) \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 1 & \theta_{d-1}/k & w_2(\theta_{d-1}) & \cdots & w_{d-1}(\theta_{d-1}) & w_d(\theta_{d-1}) \\ 1 & \theta_d/k & w_2(\theta_d) & \cdots & w_{d-1}(\theta_d) & w_d(\theta_d) \end{bmatrix}$$

• $\theta \cdot w_r(\theta) = c_r w_{r-1}(\theta) + a_r w_r(\theta) + b_r w_{r+1}(\theta)$

$$\begin{bmatrix} a_0 & b_0 & 0 & \dots & 0 \\ c_1 & a_1 & b_1 & 0 & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \dots & c_{d-1} & a_{d-1} & b_{d-1} \\ 0 & \dots & \dots & c_d & a_d \end{bmatrix} \begin{bmatrix} 1 \\ w_1(\theta_i) \\ \vdots \\ w_{d-1}(\theta_i) \\ w_d(\theta_i) \end{bmatrix} = \theta_i \begin{bmatrix} 1 \\ w_1(\theta_i) \\ \vdots \\ w_{d-1}(\theta_i) \\ w_d(\theta_i) \end{bmatrix}$$

Himanshu Gupta

Least Distortion distance-regular graphs

AGTIW Fall 2022 22 / 32

Embedding/Eigenpolytope

Let
$$\rho: V(G) \to \mathbb{R}^m$$
 be defined as $\rho(x) := \frac{u_{\theta_1}(x)}{\sqrt{2(u_{\theta_1}(x), u_{\theta_1}(x))(1-w_1(\theta_1))}}$.

Embedding/Eigenpolytope

Let
$$\rho: V(G) \to \mathbb{R}^m$$
 be defined as $\rho(x) := \frac{u_{\theta_1}(x)}{\sqrt{2(u_{\theta_1}(x), u_{\theta_1}(x))(1-w_1(\theta_1))}}.$

•
$$d(x,y) = r \Rightarrow ||\rho(x) - \rho(y)||_2 = \sqrt{\frac{1 - w_r(\theta_1)}{1 - w_1(\theta_1)}}.$$

_
_
_
_
_
_
_

Embedding/Eigenpolytope

Let $\rho: V(G) \to \mathbb{R}^m$ be defined as $\rho(x) := \frac{u_{\theta_1}(x)}{\sqrt{2(u_{\theta_1}(x), u_{\theta_1}(x))(1-w_1(\theta_1))}}.$

•
$$d(x, y) = r \Rightarrow ||\rho(x) - \rho(y)||_2 = \sqrt{\frac{1 - w_r(\theta_1)}{1 - w_1(\theta_1)}}.$$

• $\exp(\rho) = \max_{1 \le r \le d} \frac{\sqrt{\frac{1 - w_r(\theta_1)}{1 - w_1(\theta_1)}}}{r} = \sqrt{\frac{1 - w_1(\theta_1)}{1 - w_1(\theta_1)}} = 1.$

Embedding/Eigenpolytope

Let $\rho: V(G) \to \mathbb{R}^m$ be defined as $\rho(x) := \frac{u_{\theta_1}(x)}{\sqrt{2(u_{\theta_1}(x), u_{\theta_1}(x))(1-w_1(\theta_1))}}.$

•
$$d(x, y) = r \Rightarrow ||\rho(x) - \rho(y)||_2 = \sqrt{\frac{1 - w_r(\theta_1)}{1 - w_1(\theta_1)}}.$$

• $\exp(\rho) = \max_{1 \le r \le d} \frac{\sqrt{\frac{1 - w_r(\theta_1)}{1 - w_1(\theta_1)}}}{r} = \sqrt{\frac{1 - w_1(\theta_1)}{1 - w_1(\theta_1)}} = 1$

•
$$\operatorname{cont}(\rho) = \max_{1 \le r \le d} \frac{r}{\sqrt{\frac{1 - w_r(\theta_1)}{1 - w_1(\theta_1)}}}$$

Embedding/Eigenpolytope

Let $\rho: V(G) \to \mathbb{R}^m$ be defined as $\rho(x) := \frac{u_{\theta_1}(x)}{\sqrt{2(u_{\theta_1}(x), u_{\theta_1}(x))(1-w_1(\theta_1))}}.$

•
$$d(x,y) = r \Rightarrow ||\rho(x) - \rho(y)||_2 = \sqrt{\frac{1 - w_r(\theta_1)}{1 - w_1(\theta_1)}}.$$

•
$$\exp(\rho) = \max_{1 \le r \le d} \frac{\sqrt{\frac{1 - w_r(\theta_1)}{1 - w_1(\theta_1)}}}{r} = \sqrt{\frac{1 - w_1(\theta_1)}{1 - w_1(\theta_1)}} = 1.$$

•
$$\operatorname{cont}(\rho) = \max_{1 \le r \le d} \frac{r}{\sqrt{\frac{1 - w_r(\theta_1)}{1 - w_1(\theta_1)}}}.$$

• $\operatorname{dist}^2(\rho) = \max_{1 \le r \le d} \left\{ r^2 \left(\frac{1 - w_1(\theta_1)}{1 - w_r(\theta_1)} \right) \right\}$

Bounds on $c_2(G)$ for drgs

Recall

•
$$\max_{Q \in \mathcal{O}_n} \{\delta(Q)\} = c_2(G) = \min_{\rho} \{\operatorname{dist}(\rho)\}$$

• $Q_r := (k - \beta k_r)I - A + \beta A_r$, where $\beta = \min_{1 \le j \le d} \frac{k - \theta_j}{v_r(k) - v_r(\theta_j)}$

•
$$\rho(x) := \frac{u_{\theta_1}(x)}{\sqrt{2(u_{\theta_1}(x), u_{\theta_1}(x))(1-w_1(\theta_1))}}$$

Bounds on $c_2(G)$ for drgs

Recall

•
$$\max_{Q \in \mathcal{O}_n} \{ \delta(Q) \} = c_2(G) = \min_{\rho} \{ \operatorname{dist}(\rho) \}$$

•
$$Q_r := (k - \beta k_r)I - A + \beta A_r, \text{ where } \beta = \min_{1 \le j \le d} \frac{k - \theta_j}{v_r(k) - v_r(\theta_j)}$$

•
$$\rho(x) := \frac{u_{\theta_1}(x)}{\sqrt{2(u_{\theta_1}(x), u_{\theta_1}(x))(1 - w_1(\theta_1))}}$$

Cioabă, G., Ihringer and Kurihara 2022+

$$\max_{1 \le r \le d} \left\{ r^2 \min_{1 \le j \le d} \left\{ \frac{1 - w_1(\theta_j)}{1 - w_r(\theta_j)} \right\} \right\} \le c_2(G)^2 \le \max_{1 \le r \le d} \left\{ r^2 \frac{1 - w_1(\theta_1)}{1 - w_r(\theta_1)} \right\}$$

Cioabă, G., Ihringer and Kurihara 2022+

$$\max_{1 \le r \le d} \left\{ r^2 \min_{1 \le j \le d} \left\{ \frac{1 - w_1(\theta_j)}{1 - w_r(\theta_j)} \right\} \right\} \le c_2(G)^2 \le \max_{1 \le r \le d} \left\{ r^2 \frac{1 - w_1(\theta_1)}{1 - w_r(\theta_1)} \right\}$$

Conjecture (Vallentin 2008)

$$c_2(G)^2 = d^2 \min_{1 \le j \le d} \left\{ \frac{1 - w_1(\theta_j)}{1 - w_d(\theta_j)} \right\}.$$

Cioabă, G., Ihringer and Kurihara 2022+

1

$$\max_{1 \le r \le d} \left\{ r^2 \min_{1 \le j \le d} \left\{ \frac{1 - w_1(\theta_j)}{1 - w_r(\theta_j)} \right\} \right\} \le c_2(G)^2 \le \max_{1 \le r \le d} \left\{ r^2 \frac{1 - w_1(\theta_1)}{1 - w_r(\theta_1)} \right\}$$

Conjecture (Vallentin 2008)

$$c_2(G)^2 = d^2 \min_{1 \le j \le d} \left\{ rac{1 - w_1(heta_j)}{1 - w_d(heta_j)}
ight\}.$$

Conjecture (Cioabă, G., Ihringer and Kurihara 2022+)

$$c_{2}(G)^{2} = \max_{r=d-1,d} \left\{ r^{2} \min_{1 \le j \le d} \left\{ \frac{1 - w_{1}(\theta_{j})}{1 - w_{r}(\theta_{j})} \right\} \right\}$$

Cioabă, G., Ihringer and Kurihara 2022+

1

$$\max_{1 \le r \le d} \left\{ r^2 \min_{1 \le j \le d} \left\{ \frac{1 - w_1(\theta_j)}{1 - w_r(\theta_j)} \right\} \right\} \le c_2(G)^2 \le \max_{1 \le r \le d} \left\{ r^2 \frac{1 - w_1(\theta_1)}{1 - w_r(\theta_1)} \right\}$$

Conjecture (Vallentin 2008)

$$c_2(G)^2 = d^2 \min_{1 \le j \le d} \left\{ rac{1 - w_1(heta_j)}{1 - w_d(heta_j)}
ight\}.$$

Conjecture (Cioabă, G., Ihringer and Kurihara 2022+)

$$c_2(G)^2 = \max_{r=d-1,d} \left\{ r^2 \min_{1 \le j \le d} \left\{ \frac{1 - w_1(\theta_j)}{1 - w_r(\theta_j)} \right\} \right\} = \max_{r=d-1,d} \left\{ r^2 \frac{1 - w_1(\theta_1)}{1 - w_r(\theta_1)} \right\}.$$

Conjecture (Cioabă, G., Ihringer and Kurihara 2022+)

$$c_2(G)^2 = \max_{r=d-1,d} \left\{ r^2 \min_{1 \le j \le d} \left\{ \frac{1 - w_1(\theta_j)}{1 - w_r(\theta_j)} \right\} \right\} = \max_{r=d-1,d} \left\{ r^2 \frac{1 - w_1(\theta_1)}{1 - w_r(\theta_1)} \right\}.$$

Holds true for:

- Grassmann graph $G_q(n, d)$.
- Odd graphs O_{d+1} .
- Bilinear forms graph $B_q(n, d)$.
- Hadamard graphs.
- All drgs of diameter 3.
- many more...

Conjectures

Main Conjecture (Cioabă, G., Ihringer and Kurihara 2022+)

$$c_2(G)^2 = \max_{r=d-1,d} \left\{ r^2 \min_{1 \le j \le d} \left\{ \frac{1 - w_1(\theta_j)}{1 - w_r(\theta_j)} \right\} \right\} = \max_{r=d-1,d} \left\{ r^2 \frac{1 - w_1(\theta_1)}{1 - w_r(\theta_1)} \right\}.$$

Conjectures

Main Conjecture (Cioabă, G., Ihringer and Kurihara 2022+)

$$c_2(G)^2 = \max_{r=d-1,d} \left\{ r^2 \min_{1 \le j \le d} \left\{ \frac{1 - w_1(\theta_j)}{1 - w_r(\theta_j)} \right\} \right\} = \max_{r=d-1,d} \left\{ r^2 \frac{1 - w_1(\theta_1)}{1 - w_r(\theta_1)} \right\}.$$

Conjecture 1

$$\min_{1\leq j\leq d}\left\{\frac{1-w_1(\theta_j)}{1-w_r(\theta_j)}\right\}=\frac{1-w_1(\theta_1)}{1-w_r(\theta_1)}.$$
Conjectures

Main Conjecture (Cioabă, G., Ihringer and Kurihara 2022+)

$$c_2(G)^2 = \max_{r=d-1,d} \left\{ r^2 \min_{1 \le j \le d} \left\{ \frac{1 - w_1(\theta_j)}{1 - w_r(\theta_j)} \right\} \right\} = \max_{r=d-1,d} \left\{ r^2 \frac{1 - w_1(\theta_1)}{1 - w_r(\theta_1)} \right\}.$$

Conjecture 1

$$\min_{1\leq j\leq d}\left\{\frac{1-w_1(\theta_j)}{1-w_r(\theta_j)}\right\}=\frac{1-w_1(\theta_1)}{1-w_r(\theta_1)}.$$

Conjecture 2

$$\min_{1 \le r \le d} \left\{ \frac{1 - w_r(\theta_1)}{r^2} \right\} = \min_{r=d-1,d} \left\{ \frac{1 - w_r(\theta_1)}{r^2} \right\}.$$

Conjecture 1 + Conjecture 2 imply Main Conjecture. Conjecture 1 & Conjecture 2 true for all IA on Brouwer's list.

Himanshu Gupta

Least Distortion distance-regular graphs

Conjecture 1

Conjecture 1

$$\min_{1\leq j\leq d}\left\{\frac{1-w_1(\theta_j)}{1-w_r(\theta_j)}\right\}=\frac{1-w_1(\theta_1)}{1-w_r(\theta_1)}.$$

Conjecture 1 implies that ρ is optimal and $c_2(G) = \operatorname{dist}(\rho) = \operatorname{cont}(\rho)$.

Conjecture 2

Conjecture 2

$$\min_{1 \le r \le d} \left\{ \frac{1 - w_r(\theta_1)}{r^2} \right\} = \min_{r=d-1,d} \left\{ \frac{1 - w_r(\theta_1)}{r^2} \right\}.$$

Conjecture 2 implies that $c_2(G) \leq \operatorname{cont}(\rho) = \max_{r=d-1,d} \left\{ \frac{r\sqrt{1-w_1(\theta_1)}}{\sqrt{1-w_r(\theta_1)}} \right\}.$

<i>c</i> ₁	a_1	b_1	0	0	$w_1(\theta_1)$		$w_1(\theta_1)$
:	1.	1.	÷.,	:	:	$= \theta_1$:
						-	
0		c_{d-1}	a_{d-1}	b_{d-1}	$w_{d-1}(\theta_1)$		$w_{d-1}(\theta_1)$
LΟ			cd	a _d	$w_d(\theta_1)$		$w_d(\theta_1)$

Conjecture 2

Conjecture 2

$$\min_{1 \le r \le d} \left\{ \frac{1 - w_r(\theta_1)}{r^2} \right\} = \min_{r=d-1,d} \left\{ \frac{1 - w_r(\theta_1)}{r^2} \right\}.$$

Cioabă, G., Ihringer and Kurihara 2022+

$$\min_{1\leq r\leq d}\left\{\frac{1-w_r(\theta_1)}{r^2}\right\} = \min_{\lceil \frac{d+1}{2}\rceil\leq r\leq d}\left\{\frac{1-w_r(\theta_1)}{r^2}\right\}.$$

• Conjecture 2 true for drgs with diameter 3 or 4.

Least distortion of graphs of five platonic solids

 $i(G_1) = \{3; 1\}$ $i(G_2) = \{3, 2, 1; 1, 2, 3\}$ $i(G_3) = \{4, 1; 1, 4\}$ $i(G_4) = \{5, 2, 1; 1, 2, 5\}$ $i(G_5) = \{3, 2, 1, 1, 1; 1, 1, 1, 2, 3\}$

 $c_2(G_1)=1$

 $c_2(G_2)=\sqrt{3}$

 $c_2(G_3)=\sqrt{2}$

 $c_2(G_4) = 3\sqrt{\frac{\sqrt{5}-1}{2\sqrt{5}}}$

$$c_2(G_5) = 5\sqrt{\frac{3-\sqrt{5}}{6}}$$

Least distortion of several families of drgs

