Schurity problem for finite groups: overview and new results

Grigory Ryabov

Ben-Gurion University of the Negev

Algebraic Graph Theory International Webinar,
Bratislava, June 13, 2023

S-rings

- G is a finite group, e is the identity of G.
- $\mathbb{Z} G$ is the integer group ring.

A subring $\mathcal{A} \subseteq \mathbb{Z} G$ is called an S-ring (Schur ring) over G if there exists a partition $\mathcal{S}=\mathcal{S}(\mathcal{A})$ such that:

- $\{e\} \in \mathcal{S}$,
- $X \in \mathcal{S} \Rightarrow X^{-1} \in \mathcal{S}$,
- $\mathcal{A}=\operatorname{Span}_{\mathbb{Z}}\{\underline{X}: X \in \mathcal{S}\}$, where $\underline{X}=\sum_{x \in X}$.
- The elements of \mathcal{S} are called the basic sets of \mathcal{A}.
- The trivial S-ring $\mathcal{T}(G)=\operatorname{Span}_{\mathbb{Z}}\{\underline{X}: X \in\{\{e\}, G \backslash\{e\}\}\}$ if $G \neq\{e\}$.
- $\mathbb{Z} G=\operatorname{Span}_{\mathbb{Z}}\{\underline{X}: X \in\{\{g\}: g \in G\}\}$.
- The center $Z(\mathbb{Z} G)$ is an S-ring, basic sets are conjugacy classes of G.

Schurian S-rings and Schur groups

- $G_{\text {right }}=\{x \mapsto x g, x \in G: g \in G\} \leq \operatorname{Sym}(G)$.
- $\operatorname{Orb}(K, G)$ is the set of all orbits of $K \leq \operatorname{Sym}(G)$ on G.

Theorem (Schur, 1933)
Let $K \leq \operatorname{Sym}(G)$ and $K \geq G_{\text {right }}$. Then
$V(K, G)=\operatorname{Span}_{\mathbb{Z}}\left\{\underline{X}: X \in \operatorname{Orb}\left(K_{e}, G\right)\right\}$ is an S-ring over G.

An S-ring \mathcal{A} over G is called schurian if $\mathcal{A}=V(K, G)$ for some $K \leq \operatorname{Sym}(G)$ such that $K \geq G_{\text {right }}$.

- There exists a nonschurian S-ring over $E_{p^{2}}=C_{p} \times C_{p}$, where $p \geq 5$ is prime (Wielandt, 1964).

A finite group G is called a Schur group if every S-ring over G is schurian (Pöschel, 1974).

- A section of a Schur group is Schur.

Problem (Pöschel, 1974)
Determine all Schur groups.

Leung-Man theory

- $H \leq G$ is an \mathcal{A}-subgroup if $\underline{H} \in \mathcal{A}$.
- If $L \unlhd U \leq G$ and $\underline{L}, \underline{U} \in \mathcal{A}$ then $S=U / L$ is an \mathcal{A}-section.
- $\mathcal{A}_{S}=\operatorname{Span}_{\mathbb{Z}}\left\{\underline{X}^{\pi}: X \in \mathcal{S}(\mathcal{A}), X \subseteq U\right\}$, where $\pi: U \rightarrow U / L$ is the canonical epimorphism, is an S-ring over S.
- U and L are proper \mathcal{A}-subgroups of G such that $G=U \times L$.
- $\mathcal{A}=\mathcal{A}_{U} \otimes \mathcal{A}_{L}$ is the tensor product of \mathcal{A}_{U} and \mathcal{A}_{L} if $\mathcal{S}(\mathcal{A})=\left\{X_{1} \times X_{2}: \quad X_{1} \in \mathcal{S}\left(\mathcal{A}_{U}\right), X_{2} \in \mathcal{S}\left(\mathcal{A}_{L}\right)\right\}$.
- The tensor product of schurian S -rings is schurian.
- $S=U / L$ is an \mathcal{A}-section such that $\{e\}<L \unlhd G$ and $U<G$.
- $\mathcal{A}=\mathcal{A}_{U}$ is $_{s} \mathcal{A}_{G / L}$ is the generalized wreath product of \mathcal{A}_{U} and $\mathcal{A}_{G / L}$ if every $X \in \mathcal{S}(\mathcal{A}) \backslash \mathcal{S}\left(\mathcal{A}_{U}\right)$ is a union of some L-cosets.
- A necessary and sufficient condition of schurity for a generalized wreath product (Evdokimov-Ponomarenko, 2012).
- \mathcal{A} is cyclotomic if $\mathcal{S}(\mathcal{A})=\operatorname{Orb}(K, G)$ for some $K \leq \operatorname{Aut}(G)$.
- $\mathcal{A}=V\left(G_{r i g h t} K, G\right)$.

Leung-Man theory

Theorem (Leung-Man, 1996)
Let \mathcal{A} be an S-ring over a cyclic group. Then one of the following statements holds:

- \mathcal{A} is trivial;
- \mathcal{A} is a tensor product of two S-rings;
- \mathcal{A} is a generalized wreath product of two S -rings;
- \mathcal{A} is cyclotomic.

A finite group G is called an LM-group if for every S-ring over G one of the statements of the Leung-Man theorem holds.

- Every cyclic group is LM-group.
- There are infinitely many both abelian and nonabelian non-LM groups.

Problem

Determine all LM-groups.

Cyclic Schur groups

Theorem (Pöschel, 1974)
Let p be an odd prime. Cyclic p-groups are Schur and if $p \geq 5$, then a Schur p-group is cyclic.

- The above theorem also holds for $p=2$ (Golfand-Najmark-Pöschel, 1985).

Theorem (Klin-Pöschel, 1981)
A cyclic group of order $p q$, where p and q are distinct primes, is Schur.

Theorem (Evdokimov-Kovács-Ponomarenko, 2013)
Let $n \geq 1$ be an integer. The cyclic group of order n is Schur if and only if n belongs to one of the following families of integers:

$$
p^{k}, p q^{k}, 2 p q^{k}, p q r, 2 p q r,
$$

where p, q, r are primes and $k \geq 0$ is an integer.

Abelian Schur groups

Theorem (Evdokimov-Kovács-Ponomarenko, 2016)

An elementary abelian noncyclic group of order n is Schur if and only if $n \in\{4,8,9,16,27,32\}$.

- Every elementary abelian Schur group is LM-group.

Theorem (Evdokimov-Kovács-Ponomarenko, 2016)

An abelian Schur group which is neither cyclic nor elementary abelian belongs to one of the following families of groups:

- $C_{2} \times C_{2^{k}}, C_{2 p} \times C_{2^{k}}, E_{4} \times C_{p^{k}}, E_{4} \times C_{p q}, E_{16} \times C_{p}$,
- $C_{3} \times C_{3^{k}}, C_{6} \times C_{3^{k}}, E_{9} \times C_{q}, E_{9} \times C_{2 q}$,
where p and q are distinct primes, $p \neq 2$, and $k \geq 1$ is an integer.
- The following groups are Schur and LM-groups:
- $E_{4} \times C_{p}$ (Evdokimov-Kovács-Ponomarenko, 2016).
- $C_{2} \times C_{2^{k}}$ (Muzychuk-Ponomarenko, 2015).
- $C_{3} \times C_{3^{k}}$ (R., 2017).
- $E_{9} \times C_{p}$ (Ponomarenko-R., 2018).

Abelian Schur groups

Theorem 1

Let p be an odd prime. Then $C_{2 p} \times C_{2^{k}}$ is Schur if and only if $k \leq 2$.

- The group $C_{2 p} \times C_{4}$ is LM-group.
- To prove the "only if" part Theorem 1 , it is sufficient to construct a nonschurian S-ring over $G=C_{2 p} \times C_{8}$.
- For $p=3$, a nonschurian S-ring over G was computed (Ziv-Av).
- For an arbitrary odd prime p, a nonschurian S-wreath product, where $S=\left(C_{2 p} \times C_{4}\right) / C_{p}$, over G was constructed.

Theorem 2

Let p be an odd prime. Then $E_{16} \times C_{p}$ is Schur if and only if $p \not \equiv 1$ $\bmod 3$.

- Theorem 2 for $p=3$ follows from computer calculations (Pech, Reichard, Ziv-Av).
- $E_{16} \times C_{p}$ is LM-group.
- For a prime p such that $p \equiv 1$ mod 3 , a nonschurian S-wreath product \mathcal{A}, where $S=\left(E_{4} \times C_{p}\right) / C_{p}$ and $\operatorname{rk}\left(\mathcal{A}_{S}\right)=2$, over $E_{16} \times C_{p}$ was constructed.

Abelian Schur groups

Theorem 3

The following groups are Schur and LM-groups:

- $E_{4} \times C_{p^{k}}, E_{4} \times C_{p q}, C_{6} \times C_{3^{k}}, E_{9} \times C_{2 q}$, where p and q are distinct primes, $p \neq 2$, and $k \geq 1$ is an integer.

Corollary 1

Let G be an abelian group which is neither cyclic nor elementary abelian. Then G is a Schur group if and only if G belongs to one of the following families of groups:

- $C_{2} \times C_{2^{k}}, C_{2 p} \times C_{4}, E_{4} \times C_{p^{k}}, E_{4} \times C_{p q}, E_{16} \times C_{r}$,
- $C_{3} \times C_{3^{k}}, C_{6} \times C_{3^{k}}, E_{9} \times C_{q}, E_{9} \times C_{2 q}$,
where p and q are distinct primes, $p \neq 2, r$ is a prime such that $r \not \equiv 1$ $\bmod 3$, and $k \geq 1$ is an integer.

Corollary 2
Every abelian Schur group is LM-group.

Nonabelian Schur groups

- Every group of order at most 15 is Schur. In particular, there are nonabelian Schur groups (computer calculations, Fiedler, 1998).

Theorem (Ponomarenko-Vasil'ev, 2014)

Every Schur group G is metabelian and the set of prime divisors of $|G|$ is of size at most 7.

Theorem (Muzychuk, Ponomarenko, R., Vasil'ev, 2014-2015)
A nonabelian p-group is not Schur unless $p=2$ and it is isomorphic to one of the groups $Q_{8}, D_{8} * C_{4}, D_{2^{k}}$, where $k \geq 3$.

- The groups $Q_{8}, D_{8} * C_{4}, D_{2^{k}}$, where $3 \leq k \leq 5$, are Schur.

Theorem (R., 2022)
A nonabelian nilpotent Schur group whose order has at least two distinct prime divisors is isomorphic to $Q_{8} \times C_{p}$, where $p \geq 11$ is a prime such that $p \not \equiv 1 \bmod 4$ and $p \not \equiv 1 \bmod 6$.

Existence of an infinite family of nonabelian Schur groups

Question

Does an infinite family of nonabelian Schur groups exist?

- The largest known nonabelian Schur group has order 63.

Theorem

Let p be a prime. If p is a Fermat prime or $p=4 q+1$, where q is a prime, then $D_{2 p}$ is Schur.

- The largest known Fermat prime is 65537
- There are infinitely many primes $p=4 q+1$ modulo some famous (and widely believed) number-theoretical conjectures (Dickson, generalized Hardy-Littlewood).
- The keynote ingredient of the proof is nonexistence of a difference set in C_{p}.
- If $p \equiv 3 \bmod 4$ and $p>11$, then $D_{2 p}$ is not Schur (Ponomarenko-Vasil'ev, 2014).
- If $p=4 t^{2}+1$, where $t \geq 3$ is an odd integer, then $D_{2 p}$ is not Schur.
- $D_{2 p}$ is LM-group if and only if p is a Fermat prime.

Central S-rings

S-ring \mathcal{A} is central if $\mathcal{A} \leq Z(\mathbb{Z} G)$ or, equivalently, each basic set of \mathcal{A} is a union of some conjugacy classes of G.

- If G is abelian, then $Z(\mathbb{Z} G)=\mathbb{Z} G$ and hence every S-ring over G is central.
- The central S-rings over G are in one-to-one correspondence with the supercharacters of G (Hendrickson, 2010).
- The Schur-Wielandt theory for central S-rings (Chen-Muzychuk-Ponomarenko, 2016).
- Results on central S-rings over projective special linear groups (Humphries-Wagner, 2017).
- Results on automorphism groups of central S-rings over almost simple groups (Ponomarenko-Vasil'ev, 2017, Guo-Guo-R.-Vasil'ev, 2022).

Generalized Schur groups

A group G is defined to be generalized Schur if every central S-ring over G is schurian.

- G is generalized Schur and H is a normal subgroup of G.
- G / H is generalized Schur.
- In general, H is not generalized Schur.
- If every conjugacy class of H is also a conjugacy class of G, then H is generalized Schur.
- A_{5} is generalized Schur.
- There exist infinitely many nonabelian generalized Schur as well as not generalized Schur groups.

Problem

Determine all generalized Schur groups.

Generalized Schur groups

Theorem 1

Let p be a prime.

- If a noncyclic p-group is generalized Schur, then $p \in\{2,3\}$.
- If $p \in\{2,3\}$, then a p-group with a maximal cyclic subgroup is generalized Schur.

Theorem 2

Let $n \geq 1$ be an integer. The dihedral group of order $2 n$ is generalized Schur if and only if n belongs to one of the following families of integers:

$$
p^{k}, p q^{k}, 2 p q^{k}, p q r, 2 p q r
$$

where p, q, r are primes and $k \geq 0$ is an integer.

Proposition

A dihedral group of order $2 n$ is generalized Schur if and only if the cyclic group of order n is Schur.

Generalized Schur groups

- G is a Camina group if G there is $\{e\}<H \triangleleft G$ such that each H-coset distinct from H is contained in a conjugacy class of G. The pair (G, H) is a Camina pair.
- Frobenius and extraspecial groups are Camina groups.
- Any Camina group is a generalized B-group (Burnside group) (Chen-Muzychuk-Ponomarenko, 2016).

Theorem 3

Let (G, H) be a Camina pair. If H and G / H are generalized Schur groups, then so is G. In particular, a Frobenius group with generalized Schur kernel and complement is generalized Schur.

Corollary

Let p and q are primes such that $q \equiv 1(\bmod p)$. Then the nonabelian group of order $p q$ is generalized Schur.

