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Polyhedra
• Ancient history (Greeks), closely tied to symmetry.

• Over time, many changes in point of view about polyhe-
dral structures and their symmetry. Many different defini-
tions!

So what’s a polyhedron?
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Five Platonic solids (solids, convexity)

{3,5}

Thirteen Archimedean solids, plus prisms and antiprisms



Four Kepler-Poinsot (star) polyhedra

Faces and vertex-figures can be star-polygons (pentagrams).



Three Petrie-Coxeter polyhedra (sponges)

Infinite polyhedra (apeirohedra)! Faces still convex polygons! Vertex-

figures are skew (non-planar) polygons! Periodic!

Vertex-figure at vertex x: joins the vertices adjacent to x in the order in

which they occur around x



Vertex-figure of the Petrie-Coxeter polyhedron {4,6|4}

Vertex-figures skew hexagons! Faces squares! All regular!

Can build a new polyhedral structure from this by putting together all

vertex-figures taken at every other vertex!



Skeletal Polyhedra

• Graph-theoretical (skeletal) approach initiated by Grünbaum
(1970’s).

• Faces and vertex-figures allowed to be skew!
• Faces are cycles or path of edges! Allowed to be zigzags
or helical polygons!
• No membranes spanned into faces! Focus on skeleton!

• Skeletal regular polyhedra in ordinary space?
Grünbaum-Dress Polyhedra

• Symmetry groups are reflection groups generated by re-
flections R0, R1, R2 in points, lines, or planes. Accounts for
skew faces and vertex-figures!



Skeletal Polyhedron

Polygon: connected graph, only vertices of valency 2.

A polyhedron P in E3 is a finite or infinite family of simple
polygons, called faces, such that

• each edge of a face is an edge of just one other face,

• all faces incident with a vertex form one circuit,

• P is connected,

• each compact set meets only finitely many faces (dis-
creteness).

All traditional polyhedra are skeletal polyhedra.
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The Petrie dual (Petrial) of the cube. A regular polyhedron with 8

vertices, 12 edges, 4 skew hexagonal faces. Type {6,3}.



Highly symmetric skeletal polyhedra

• Faces finite (flat or skew) or infinite (helical or zig-zags)!
Vertex-figures finite (flat or skew)!

• P called regular if the symmetry group G(P ) is transitive
on the flags.

Flag: incident triple of a vertex, an edge, and a face.

• P called chiral if G(P ) has two orbits on the flags such
that adjacent flags are in distinct orbits.

• P called Archimedean if G(P ) is vertex-transitive and P
has regular polygons as faces.



The Petrie dual of the square tessellation. An infinite regular
polyhedron with zig-zag faces. Type {∞,4}.



The helix-faced regular polyhedron {∞,3}(b).



The helix-faced polyhedron {∞,3}(b)



The 48 Regular Polyhedra in E3

(Grünbaum 1970’s, Dress 1981. New approach in McMullen & S. 1997)

• Symmetry group generated by reflections R0, R1, R2 in
points, lines, or planes. Classification of such triples of re-
flections (R0, R1, R2)!

18 finite polyhedra: 5 Platonic, 4 Kepler-Poinsot, 9 Petrials.
(2 full tetrahedral symmetry, 4 full octahedral, 12 full icosahedral)
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{4,3}π



Finite regular polyhedra

18 finite (5 Platonic, 4 Kepler-Poinsot, 9 Petrials)

tetrahedral {3,3} π←→ {4,3}3

octahedral {6,4}3
π←→ {3,4} δ←→ {4,3} π←→ {6,3}4

icosahedral {10,5} π←→ {3,5} δ←→ {5,3} π←→ {10,3}
l ϕ2 l ϕ2

{6, 5
2}

π←→ {5, 5
2}

δ←→ {5
2,5}

π←→ {6,5}
l ϕ2 l ϕ2

{10
3 ,3}

π←→ {5
2,3}

δ←→ {3, 5
2}

π←→ {10
3 ,

5
2}

duality δ : R2, R1, R0; Petrie π : R0R2, R1, R0; facetting ϕ2 : R0, R1R2R1, R2



30 apeirohedra (infinite polyhedra)! Crystallographic groups!

6 planar (three regular tessellations, and their Petrials)

The Petrie dual {4,4}π, of type {∞,4}.



12 reducible apeirohedra. Blends of a planar polyhedron and
a linear polygon (line segment or line tessellation).

Blends of a planar polyhedron and a line segment
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Square tessellation {4,4} blended with the line segment { }. Symbol

{4,4}#{ }.



Same blend, different ratio between components
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Square tessellation {4,4} blended with the line segment { }. Symbol

{4,4}#{ }.



Blends of a planar polyhedron and a line tessellation
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u uu u The square tessellation {4,4} blended with a line

tessellation {∞}. Symbol {4,4}#{∞}. Each vertical

column is occupied by a single helical facet spiraling

around the column.



12 irreducible apeirohedra.

{∞,4}6,4
π←→ {6,4|4} δ←→ {4,6|4} π←→ {∞,6}4,4

σ ↓ ↓ η

{∞,4}·,∗3 {6,6}4
ϕ2−→ {∞,3}(a)

π l l π

{6,4}6
δ←→ {4,6}6

ϕ2−→ {∞,3}(b)

σδ ↓ ↓ η

{∞,6}6,3
π←→ {6,6|3}

η : R0R1R0, R2, R1; σ=πδηπδ : R1, R0R2, (R1R2)2; ϕ2 : R0, R1R2R1, R2



{6,4|4}π, the Petrie dual of the Petrie-Coxeter polyhedron {6,4|4}.
Alternative notation: {∞,4}6,4.

Not every regular polyhedron has a geometric dual! For example, {∞,4}6,4

does not!



The helix-faced regular polyhedron {∞,3}(b). Its Petrie dual is {∞,3}(a).

Neither has a geometric dual!

Symmetry group of {∞,3}(b) requires the single extra relation

(R0R1)4(R0R1R2)3 = (R0R1R2)3(R0R1)4.



Breakdown by mirror vector (for reflection generators R0, R1, R2)

Vector (m0,m1,m2), where mi is the dimension of the mirror of Ri.

mirror {3,3} {3,4} {4,3} faces vertex-
vector figures

(2,1,2) {6,6|3} {6,4|4} {4,6|4} planar skew

(1,1,2) {∞,6}4,4 {∞,4}6,4 {∞,6}6,3 helical skew

(1,2,1) {6,6}4 {6,4}6 {4,6}6 skew planar

(1,1,1) {∞,3}(a) {∞,4}·,∗3 {∞,3}(b) helical planar

Last row: polyhedra occur in two enantiomorphic forms, yet geometri-

cally regular!

Presentations for the symmetry groups are known. The “fine” Schläfli

symbol signifies defining relations. Extra relations specify order of

R0R1R2, R0R1R2R1, or R0(R1R2)2.



Chiral Polyhedra in E3

Chirality in the presence of very high symmetry! Combinatorialized no-

tion of chirality!

• Two flag orbits under symmetry group G(P ), with adja-
cent flags in different orbits. Maximal “rotational” symme-
try, no “reflexive” symmetry!

• Local picture
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Geometric symmetries S1 and S2 must exist! S1, S2 are NOT geometric

rotations in general, but combinatorially they act like rotations would!



• Classification breaks down into

– polyhedra with finite faces and

– polyhedra with infinite faces!

• Three very large 2-parameter families of chiral polyhedra

of each kind!

• Chiral polyhedra must be infinite (apeirohedra)! No finite

or blended examples! Finite faces must be skew, and infinite

faces must be helical.

S. (2004, 2005)
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Chiral polyhedron P (1,0) of type {6,6}. Neighborhood of a single vertex.
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Chiral polyhedron Q(1,1), type {4,6}. Neighborhood of a single vertex.



Three Classes of Finite-Faced Chiral Polyhedra

(S1, S2 rotatory reflections, hence skew faces and skew vertex-figures.)

Schläfli {6,6} {4,6} {6,4}

Notation P (a, b) Q(c, d) Q(c, d)∗

Param. a, b ∈ Z, c, d ∈ Z, c, d ∈ Z,
(a, b) = 1 (c, d) = 1 (c, d) = 1

geom. self-dual
P (a, b)∗ ∼= P (a, b)

Regular P (a,−a)={6,6}4 Q(c,0)={4,6}6 Q(c,0)∗={6,4}6
cases P (a,a)={6,6|3} Q(0,d)={4,6|4} Q(0,d)∗={6,4|4}

Each extended family contains two regular polyhedra (for these param-

eter values the faces or vertex-figures become flat).



Chiral polyhedron Q(1,1), type {4,6}. Skew squares, six at each vertex.

Vertex set is Λ3. (All models built and photographed by Daniel Pellicer.)



Three Classes of Helix-Faced Chiral Polyhedra

(S1 screw motion, S2 rotation; helical faces and planar vertex-figures.)

Schläfli {∞,3} {∞,3} {∞,4}

Notat. P1(a, b) P2(c, d) P3(c, d)∗

Param. a, b ∈ R, c, d ∈ R, c, d ∈ R,
(a, b) 6= (0,0) (c, d) 6= (0,0) (c, d) 6= (0,0)

Helices triangles squares triangles
over

P (a, b)ϕ2 Q(c, d)ϕ2 Q∗(c, d)κ

Regular P1(a,−a)={∞,3}(a) P2(c,0)={∞,3}(b) P3(0, d)={∞,4}·,∗3
(self-Petrie)

P1(a, a)={3,3} P2(0, d)={4,3} P3(c,0)={3,4}

Each extended family contains two regular polyhedra, one finite and

one infinite. Helices collapse or vertex-stars become planar.



Chiral polyhedron P1(0,1) of type {∞,3}. Helical faces over triangles,

three at each vertex. Photo taken in the direction of a helix; triangular

projection of a helical face visible.



Chiral polyhedron P2(1,1) of type {∞,3}. Helical faces over squares,

three at each vertex. Photo taken in the direction of a helix.



Remarkable facts about chiral polyhedra

• Essentially: any two finite-faced polyhedra are combina-
torially non-isomorphic.

P (a, b) ∼= P (a′, b′) iff (a′, b′) = ±(a, b),±(b, a).

Q(c, d) ∼= Q(c′, d′) iff (c′, d′) = ±(c, d),±(−c, d).

• Finite-faced polyhedra are combinatorially chiral! Helix-
faced polyhedra combinatorially regular! Chiral helix-faced
polyhedra are deformations of regular helix-faced polyhedra!
[Pellicer & Weiss 2009].

• Chiral helix-faced polyhedra unravel Platonic solids!
Coverings

{∞,3} 7→{3,3}, {∞,3} 7→{4,3}, {∞,4} 7→{3,4}.



More polygons on an edge ....
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Vertex neighborhood in K4(1,2): 4 faces at an edge; 12 at a vertex (octa-

hedral vertex-figure). All Petrie polygons of every other cube. Net pcu.



Regular Polygonal Complexes in E3

(joint with D.Pellicer, 2010, 2013)

A polygonal complex K in E3 is a family of simple polygons,
called faces, such that

• each edge of a face is an edge of exactly r faces (r ≥ 2);

• the vertex-figure at each vertex is a connected graph,
possibly with multiple edges;

• the edge graph of K is connected;

• each compact set meets only finitely many faces (dis-
creteness).

K is regular if its geometric symmetry group G(K) is tran-
sitive on the flags of K.
(flag: incident vertex-edge-face triple)



Examples

• All regular polyhedra (r = 2). There are 48.

• All squares of the cubical tessellation (r = 4).
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Vertex-figure: octahedral graph!
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K1(1,2): four tetragons on an edge. Petrie polygons of tetrahedra in-

scribed in cubes, in an alternating fashion. The net is fcu.
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K5(1,2): 4 faces at an edge, 8 at a vertex (double square as vertex-

figure). One Petrie-polygon for each cube. Net is nbo (Niobium Monox-

ide, NbO).



Case: Symmetry group G(K) not simply flag-transitive

• K is the 2-skeleton of a certain rank 4 structure in E3,

called a regular 4-apeirotope. There are eight such rank 4

structures contributing four regular polygonal complexes!
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Eight regular 4-apeirotopes in E3 (in pairs of Petrie duals).

Infinite! Two have square faces, the others zigzag faces. Face mirrors!



The eight regular 4-apeirotopes in E3

{4,3,4} {{4,6 |4}, {6,4}3}

apeir{3,3} = {{∞,3}6#{ }, {3,3}} {{∞,4}4#{∞}, {4,3}3} = apeir{4,3}3

apeir{3,4} = {{∞,3}6#{ }, {3,4}} {{∞,6}3#{∞}, {6,4}3} = apeir{6,4}3

apeir{4,3} = {{∞,4}4#{ }, {4,3}} {{∞,6}3#{∞}, {6,3}4} = apeir{6,3}4



Case: Symmetry group G(K) simply flag-transitive

• Includes all regular polyhedra.

• Finite complexes must be polyhedra (18 examples).

• 21 simply flag-transitive regular polygonal complexes in E3

which are not polyhedra and are infinite.



The 21 simply flag-transitive regular polygonal complexes in E3 which

are not polyhedra, and their nets (edge graphs).

Complex G2 r Face Vertex-Figure Vertex G∗ Net
Set

K1(1,2) D2 4 4s cuboctahedron Λ2 [3,4] fcu
K2(1,2) C3 3 4s cube Λ3 [3,4] bcu
K3(1,2) D3 6 4s double cube Λ3 [3,4] bcu
K4(1,2) D2 4 6s octahedron Λ1 [3,4] pcu
K5(1,2) D2 4 6s double square V [3,4] nbo
K6(1,2) D4 8 6s double octah. Λ1 [3,4] pcu
K7(1,2) D3 6 6s double tetrah. W [3,4] dia
K8(1,2) D2 4 6s cuboctahedron Λ2 [3,4] fcu

K1(1,1) D3 6 ∞3 double cube Λ3 [3,4] bcu
K2(1,1) D2 4 ∞3 double square V [3,4] nbo

nbo = net of Niobium Monoxide, NbO



The 21 complexes and their nets (cont.).

Complex G2 r Face Vertex-Figure Vertex G∗ Net
Set

K3(1,1) D4 8 ∞3 double octah. Λ1 [3,4] pcu
K4(1,1) D3 6 ∞4 double tetrah. W [3,4] dia
K5(1,1) D2 4 ∞4 ns-cuboctah. Λ2 [3,4] fcu
K6(1,1) C3 3 ∞4 tetrahedron W [3,4]+ dia
K7(1,1) C4 4 ∞3 octahedron Λ1 [3,4]+ pcu
K8(1,1) D2 4 ∞3 ns-cuboctah. Λ2 [3,4] fcu
K9(1,1) C3 3 ∞3 cube Λ3 [3,4]+ bcu

K(0,1) D2 4 ∞2 ns-cuboctah. Λ2 [3,4] fcu
K(0,2) D2 4 ∞2 cuboctah. Λ2 [3,4] fcu
K(2,1) D2 4 6c ns-cuboctah. Λ2 [3,4] fcu
K(2,2) D2 4 3c cuboctahedron Λ2 [3,4] fcu

V := Z3 \ ((0,0,1) + Λ(1,1,1)), W := 2Λ(1,1,0) ∪ ((1,−1,1) + 2Λ(1,1,0))



Edge-graph (net) of K7(1,2): diamond net, modeling the
diamond crystal. (Carbon atoms sit at the vertices, and bonds be-

tween adjacent atoms are represented by edges. The “hexagonal rings”

are the faces of K7(1,2).)

Edges of K7(1,2) run along main diagonals of cubes in {4,3,4}. Six skew hexagonal

faces around an edge (r = 6). Vertex-figure is the double edge-graph of the tetrahedron

(so 12 faces meet at a vertex).



Archimedean (Uniform) Skeletal Polyhedra in E3

• Faces are regular polygons (flat, skew, helical, zigzag).

• G(P ) transitive on vertices of P .

What is known?

• Convex polyhedra: Archimedean solids

Skeletal analogues of the Archimedean solids!

• Finite Archimedean polyhedra with planar faces

— Classical paper by Coxeter, Longuet-Higgins and Miller (1954)

— Completeness proof by Skilling (1974), Har’El (1993).

• Arbitrary Archimedean skeletal polyhedra wide open!

— Finite polyhedra with skew faces not classified.



Tractable class: Wythoffians (“truncations”)
(E.S. & Abigail Williams 2016)

• Archimedean solids from Platonic solids via Wythoff’s
construction (exploits reflection group structure)!
Archimedean solids: Wythoffians of Platonics!

..........

• The 48 regular skeletal polyhedra in E3 have symmetry
groups generated by reflections (in points, lines or planes)!

• Run a variant of Wythoff to produce skeletal Wythoffians
of the 48 regular skeletal polyhedra.

• Initial vertex in E3 (not on a surface, less confined).

• Wythoffians always vertex-transitive, not always Archimedean!



Wythoff’s construction in the classical case
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u2uv initial vertex v of type {0,1,2}

Labeled simplicial 2-complex (barycentric subdivision, order
complex)! Seven possible types I for initial vertices v (non-
empty subsets of {0,1,2})



Wythoffian’s of the square tessellation {4,4}

P0 P1 P2 P01

P02 P12 P012



The seven Wythoffians of the Petrie-Coxeter

polyhedron {4,6|4}







Another tractable class: Snub Wythoffians (“trun-
cations”) (in progress, joint with Tomas Skacel)

Snub cube and snub dodecahedron

• Use a “rotational variant” of Wythoff’s construction to
produce skeletal snub Wythoffians of the regular skeletal
polyhedra. .

• Exploit structure of the (combinatorial) “rotation sub-
group” of G(P )!

• Snub Wythoffians always vertex-transitive, not always
Archimedean!



Wythoff’s construction in the classical case
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Allow only “rotational” symmetries.

Skeletal variant of Wythoff (surface free)!



Snub Wythoffian of the square tessellation {4,4}

uniform vs. nonuniform



Snub Wythoffian of Petrie-Coxeter {4,6|4}



Snub Wythoffian of {4,4}π



Other interesting classes of skeletal polyhedra

• 2-orbit polyhedra

Pellicer & Williams (2023): classes 20 and 22 classified

• 3-orbit polyhedra

Cunningham & Pellicer (2021): finite polyhedra classified

• regular polyhedra of index 2 (combinatorially regular,

symmetry group of index 2 in combinatorial automorphism

group)

Cutler & S. (2011/2012): finite polyhedra classified



..... The End .....

Thank you



Abstract The study of highly symmetric structures in Eu-

clidean 3-space has a long and fascinating history tracing

back to the early days of geometry. With the passage of

time, various notions of polyhedral structures have attracted

attention and have brought to light new exciting figures in-

timately related to finite or infinite groups of isometries. A

radically different, skeletal approach to polyhedra was pi-

oneered by Grunbaum in the 1970’s building on Coxeter’s

work. A polyhedron is viewed not as a solid but rather

as a finite or infinite periodic geometric edge graph in space

equipped with additional polyhedral super-structure imposed

by the faces. Since the mid 1970’s there has been a lot

of activity in this area. Much work has focused on classi-

fying skeletal polyhedra and complexes by symmetry, with

the degree of symmetry defined via distinguished transitivity



properties of the geometric symmetry groups. These skele-

tal figures exhibit fascinating geometric, combinatorial, and

algebraic properties and include many new finite and infinite

structures.


