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Some history

Theaetetus (416 - 368 BC), a contemporary of Plato, gave a mathematical
description of all five Platonic solids and may have been responsible for the first
known proof that no other convex regular polyhedra exist. Book XIII, the climax
of the Euclid’s Elements, dealing with Platonic solids is derived from the work of
Theaetetus.

Archimedes (287 - 212 BC) enumerated semi-regular convex polyhedra and
although no work of his on polyhedra survived it is mentioned in the work of
Pappus of Alexandria.

...

...

Kepler, Poinsot, Cauchy, ...
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Schläfli (1814 - 1895) extends the concept of a poyhedron to higher dimensions.
Although his work was completed between 1850 and 1852, it was was published
posthumously in 1901. Schläfli introduced the concept of higher-dimensional
polytopes, which he called polyschemes. He proved that there are exactly six
regular polytopes in four dimensions and only three in dimensions higher than
four. He introduced the notion of what we now call Schläfli symbol.

Between 1890 and 1895 Stott working alone without any scientific contact
rediscovered the six regular polytopes in dimension 4. She continues her work in 4
dimensions in collaboration with Schoute between 1985 and 2013.

Coxeter (1907 - 2003) is responsible for revival of interest in polyhedra and
polytopes and the most comprehensive treatment of the subject. He collaborated
with Stott between 1930 and 1940. His investigations of symmetries of these
structures led him to the enumeration of reflection groups.

Grünbaum (1929 - 2018) in 1977 makes a contribution of great significance with
the publication ”Regular polyhedra - Old and new”.
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Enumeration of regular polyhedra

Regular polyhedra with convex faces - FINITE

Platonic Solids

Photo credit: Rinus Roelofs

Schläfli type: {3, 3} {4, 3} {3, 4} {5, 3} {3, 5}

Note: The vertex-figures are also convex polygons.
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Regular polyhedra with convex faces - INFINITE

Regular Sponges - Petrie-Coxeter polyhedra

(Discovered in 1926 and related to {4, 3, 4}, a cubical tessellation of E3.)

Photo credit: Rinus Roelofs

Schläfli type: {4, 6s} {6, 4s} {6, 6s}

Note: The faces are convex polygons, but the vertex-figures are skew polygons!
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Regular polyhedra with non-convex (finite, planar) faces or vertex-figures

Photo credit: Rinus Roelofs

Schläfli type: {5/2, 3} {5/2, 5} {3, 5/2} {5, 5/2}

The two stellated dodecahedra (on the left) were first recognized as regular by Kepler in 1619.

In 1809, Poinsot rediscovered Kepler’s figures and discovered the great icosahedron and great
dodecahedron.

In 1812 Cauchy proved that the list is complete.
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Regular polyhedra in modern theory

Grünbaum (1929 - 2018) extended the definition of regular polyhedra to
include non-planar faces.

”The Original Sin in the theory of polyhedra
goes back to Euclid, and through Kepler,
Poinsot, Cauchy, and many others
continues to afflict all work on this topic.

...
The writers failed to define what are the
’polyhedra’ among which they are finding

the regular ones.”∗

∗ B. Grünbaum ”Polyhedra with hollow faces” in POLYTOPES: Abstract, Convex and

Computational, NATO ASI series, 1994.
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Regular polyhedra with non-planar (finite) faces

FINITE

{6s , 3} ⇐⇒ Petrial of a cube {4, 3}

INFINITE

{6s , 6} ⇐⇒ one half of the vertex-figures of a Petrie-Coxeter poyhedron {4, 6s}
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Regular polyhedra with infinite faces

Grünbaum-Dress polyhedron

{∞, 3}[4]
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Geometric Polyhedra

A geometric polyhedron is a discrete faithful realization of a
(non-degenerate) map in E 3

vertex 7→ point
edge 7→ line segment
face 7→ finite polygon or apeirogon

Note: Each compact set meets only finitely many faces and the degree of each

vertex is finite.

A polyhedron in E 3 is said to be geometrically regular if its symmetry
group (the group of isometries keeping the polyhedron invariant) is
transitive on the set of its flags.

Note: Faces of geometrically regular polyhedra must be regular polygons.

One approach to Grünbaum’s classification is through such realizations.
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Classification of Geometrically Regular Polyhedra

(Grünbaum-Dress 1985):

Platonic solids {3, 3} {3, 4} {4, 3} {3, 5} {5, 3} 5
Kepler-Poinsot polyhedra {3, 5/2} {5/2, 3} {5, 5/2} {5/2, 5} 4
Petrials of these · · · 9

Regular tessellations of E 2 {4, 4} {3, 6} {6, 3} 3
Blends of these with segments · · · 3
Blends of these with {∞} · · · 3
Petrials of these · · · 9

Petrie-Coxeter polyhedra {4, 6|4} {6, 4|4} {6, 6|3} 3
Grünbaum-Dress polyhedra 9

—
48

18 finite polyhedra
6 planar polyhedra
24 infinite 3-dimensional polyhedra
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Geometrically chiral polyhedra

A polyhedron in E 3 is said to be geometrically chiral if its symmetry group
has two orbits on the set of flags with adjecent fags in distinct orbits.

Note: A geometrically chiral polyhedron is either a chiral or a regular
abstract polyhedron.

Theorem: Finite chiral (geometric) polyhedra do not exist.

Theorem (Schulte 2005): Discrete chiral polyhedra can be classified in the
following six families.

Finite faced polyhedra: {6, 6}[a,b] {4, 6}[a,b] {6, 4}[a,b]

Infinite faced polyhedra: {∞, 3}[3] {∞, 3}[4] {∞, 4}[3]

Theorem (Pellicer, AIW 2010): Chiral polyhedra with finite faces are
abstract chiral polyhedra. The chiral polyhedra with infinite faces are
regular abstract polyhedra.
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Examples of geometrically chiral polyhedra

{∞, 3}[4] {6, 6}[1,0]
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Geometrically uniform polyhedra

A geometric polyhedron P is defined to be uniform if P has regular faces
and its symmetry group acts transitively on the vertices of P.

Finite uniform polyhedra with planar faces had been enumerated by Coxeter,

Longuet-Higgins and Miller (1954). No classification to date is known for

non-planar faces, however a number of examples have been constructed by

Abigale Williams.

Example

with vertex type (4c .6s .4c .6s)

An infinite uniform polyhedron
with hexagonal skew faces derived
from a Petrie-Coxeter polyhedron
using Wythoff construction.
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Example

Non-Wythoffian, uniform polyhedron

with vertex type (4s .6s .4s .6s)

Construction (due to A. Williams)
of a finite uniform polyhedron with
10 vertices, 24 edges and 10 faces
(six 4s and four 6s).
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Realizations of finite regular polytopes

Grünbaum classified finite regular geometric polyhedra in E 3 into 3 classes:
5 Platonic solids, 4 star-polyhedra, and 9 of their Petrials.

A different approach: Given a finite regular abstract polytope realize it as
a symmetric object in a euclidean n-space.

Example: The abstract polygon {6} can be realized as

convex hexagon {6c} in E 2,

regular simple skew hexagon {6s} (Petrie polygon of a cube) in E 3,

self-intersecting skew hexagon (inscribed in a triangular prism) in E 3,

hexagon containing all vertices of regular simplex in E 5.

Goal: Describe all such realizations for a specific polytope.
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Abstract Polytopes

An abstract polytope P of rank n, or an n-polytope is a poset, whose
elements are called faces, with strictly monotone rank function with range
{−1, 0, 1, . . . , n} satisfying the following properties.

P has a unique minimal face F−1 and a unique maximal face Fn.

The maximal chains, called flags, of P contain exactly n + 2 faces.

P is strongly flag-connected.

P satisfies a homogeneity property.
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Regular abstract polytopes

Abstract polytope P is said to be regular if its group of automorphisms
Aut(P) is transitive on the flags of P.

=⇒ Aut(P) is generated by involutions (determined by the ”base” flag).

ρn−1

ρ1

ρ0

C−diagram:
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Given that P is a regular n−polytope and Φ one of its flags, Aut(P) is
generated by the distinguished generators ρi , i = 0, . . . , n − 1, that
interchange Φ with its i−adjecent flag Φi and satisfy the relations implicit
in the string Coxeter graph associated with the string Coxeter group
[p1, . . . , pn−1].

⇒ Regular polytopes can be assigned a Schläfli type {p1, . . . , pn−1}.

The generators of the automorphism group of an abstract polytope satisfy
an intersection property IP:

〈ρi | i ∈ I 〉 ∩ 〈ρi | i ∈ J〉 = 〈ρi | i ∈ I ∩ J〉, ∀I , J ⊆ {0, . . . , n − 1}.
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Characterization of groups of regular abstract polytopes

A quotient of a string Coxeter group [p1, . . . , pn−1] with generators that
satisfy the intersection property IP is called a C−group.

Theorem (Schulte, 1982): Given a C−group one can construct a regular
polytope having this group as its automorphism group.

Example: From a quotient of the Coxeter group [4, 4] by a translation subgroup

one can construct regular polytope of rank 3 (a regular map on torus of Schläfli

type {4, 4}).
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Realizations of finite abstract regular polytopes

Let P be a finite regular abstract n-polytope, Pj be the set of its j-faces.
Following McMullen, we define a realization of P consisting of

a set V0 of points in a euclidean space E , together with a surjection
β = β0 : P0 → V0, such that

each automorphism of P induces an isometric permutation of V0.

For j = 1, . . . , n, β0 recursively induces a surjection βj : Pj → Vj , with Vj ⊆ 2Vj−1

given by Fβj = {Gβj−1|G ∈ Pj−1 and G ≤ F} for F ∈ Pj .

Then P := Vn encapsulates all the structure of P. We refer to it as realization of
P and call it a (geometric) polytope.

We say that the realization P (or β) is faithful if each βj is a bijection.

We say that the realization is pure if its symmetry group is irreducible.
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A (faithful) realization of a regular polytope P induces a (faithful) realization of
each section of P. For finite polytopes faithful realizations always exist.

When G (P) act reducibly on E then in a natural way P is congruent to a blend
of lower dimensional realizations. Each realization is a blend of pure realizations.

Example: {4} can be realized in

E 1 as a segment {} E 2 as a square {4c} E 3 as {4s} = {}#{4c}
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Realizations cone

The congruence classes of realizations have the structure of a convex
r -dimensional cone, where r is the number of diagonal classes in P (a
diagonal is an unordered pair of distinct vertices of P0).

Example:
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Examples

{5} has two pure, faithful realizations: {5} (2-dim) and { 5
2
} (2-dim)

(note that {5}#{ 5
2
} is a 4-dimensional simplex realization).

{6} has three pure realizations: {} (1-dim, deg), {3} (2-dim, deg), and {6c} (2-dim, faithful)
(note that {}#{6c} = {6s}, {}#{3} is a self-intersecting skew hexagon, and
{}#{3}#{6s} is a 5-dimensional simplex realization).

{3, 3} has a unique (simplex) realization.

{3, 4} has two pure realizations: octahedron {3, 4} (3-dim, faithful) and {3} (2-dim, deg)
(their blend is 5-dimensional simplex realization).

{4, 3} has three pure realizations: {} (1-dim, deg), cube {4, 3} (3-dim, faithful), and {3, 3}π
(3-dim, deg realization that is a faithful realization of the hemi-cube {4, 3}3).

{3, 5} has three pure realizations: icosahedron {3, 5} (3-dim, faithful), great icosahedron
{3, 5

2
} (3-dim, faithful), and a 5-dimensional degenerate realization having vertices of a

5-dimensional simplex (that is a faithful realization of the hemi-icosahedron {3, 5}5).

{5, 3} has five pure realizations: two faithful in dimension 3, one faithful in dimension 4,
and two degenerate in dimensions 4 and 5.

Note: Only 3-dim faithful realizations above are regular polyhedra as defined by Grünbaum.
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Realizations of regular toroids

In 1999 - 2000, with Barry Monson, we explicitly determine and describe the pure
realizations of finite regular toroidal polyhedra (toroidal maps).

Realizations of {4, 4} For a fixed b, we start with group K which is the direct
product of 4 dihedral groups each of order 2b (so K has 8 involutory generators
indexed by the elements of B2 = 〈ρ0, ρ1〉 and order (2b)4).

We extend K by twisting operations (on the group K ) to get K
′

= K o B2

and faithfully represent K
′

as a group of orthogonal transformations in the

8-dimensional euclidean space.
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Example {4, 4}(4,0) has six inequivalent pure realizations. One each of 0, 1, and

2-dimensions, and three 4-dimensional realizations:

a faithful realization consisting of
the 16 vertices, the 32 edges
of the hypercube {4, 3, 3},
and sixteen squares belonging to a
”horizontal” belt of four cubes;

a faithful realization consisting of 16 vertices of the hypercube, the 32 edges that are the
body diagonals of the eight cubical facets of the hypercube, and the 16 skew faces (each
inscribed in a belt of four cubical facets);

a non-faithful (2:1 collapse) realization
consisting of 8 alternate vertices of the hypercube,
16 edges that are the diagonals of the square faces
of the hypercube connecting selected vertices,
and the 8 skew faces.
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In general, let P = {4, 4}(b,0) with b ≥ 2. For each 0 ≤ m ≤ l ≤ b
2 there are

distinct pure realizations Pm,l of P.

The dimensions of the realizations can be neatly be encoded in a picture of P as

toroidal map:

Inequivalent pure realizations are indexed by the vertices in the fundamental region for

symmetry group of the grid. The dimension of each non-trivial pure realization Pm,l equals the

size of the orbit of the corresponding grid vertex, under the dihedral group generated by the two

grid symmetries and toroidal identifications.
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Since {4, 4}(2b,0) doubly covers {4, 4}(b,b) (which belongs to the other
family of regular toroidal maps), every realization of the toroid {4, 4}(b,b)

is some pure realization of {4, 4}(2b,0).

Example: Recall, the non-faithful realization of {4, 4}(4,0) onto the alternate
vertices of the hypercube. These 8 vertices are vertices of an inscribed (regular)
cross-polytope providing a faithful realization of {4, 4}(2,2).

The 16 edges of {4, 4}(2,2) are realized as just those edges of the cross-polytope

which remain after removing those in two orthogonal equatorial squares

(indicated in grey).
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Incidence Systems

We next extend the concept of a polytope to a more general structure of a
hypertope.

An incidence system Γ := (X , ∗, t, I ) is a 4-tuple such that

X is a set whose elements are called the elements of Γ;

I is a finite set whose elements are called the types of Γ;

t : X → I is a type function, associating to each element x ∈ X of Γ
a type t(x) ∈ I ;

∗ is a binary relation on X called incidence, that is reflexive,
symmetric and such that for all x , y ∈ X , if x ∗ y and t(x) = t(y)
then x = y .

The rank of Γ is the cardinality of I .

Examples: cube, cube with an edge appended at a vertex, skeletal cube...
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Incidence geometries

A flag is a set of pairwise incident elements
of Γ.

The type of a flag F is {t(x) : x ∈ F}.

A chamber is a flag of type I .

An incidence system Γ is a geometry (or incidence geometry) if every flag
of Γ is contained in a chamber.

Examples: cube, skeletal cube.
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Thin geometries

A geometry Γ is called thin if for each i ∈ I any flag of type I \ {i} is
contained in exactly two chambers.

The homogeneity condition in the definition of abstract polytopes
guaranties that abstract polytopes are thin geometries.

Skeletal cube is not a thin geometry.

Non-degenerate maps and hypermaps are examples of thin geometries.
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Residues and automorphisms

Let Γ := (X , ∗, t, I ) be an incidence geometry and F a flag of Γ. The
residue of F in Γ is the incidence geometry ΓF := (XF , ∗F , tF , IF ) where

XF := {x ∈ X : x ∗ F , x 6∈ F};
IF := I \ t(F );

tF and ∗F are the restrictions of t and ∗ to XF and IF .

An automorphism of Γ := (X , ∗, t, I ) is a mapping α : X 7→ X such that
for all x , y ∈ X

α is a bijection on X (inducing a bijection on I );

x ∗ y if and only if α(x) ∗ α(y);

t(x) = t(y) if and only if t(α(x)) = t(α(y)) .

An automorphism is type preserving when for each x ∈ X , t(α(x)) = t(x).
The set of all type preserving automorphism of Γ is denoted by AutI (Γ).

Γ is chamber transitive if AutI (Γ) is transitive on the set of chambers of Γ.
32 / 1



Hypertopes

A hypertope is a thin incidence geometry that is strongly chamber
connected (SCC). (Or, residually connected as commonly used in the
terminology of incidence geometries).

Examples: abstract polytopes, non-degenerate hypermaps ...

A hypertope Γ is said to be regular if AutI (Γ) has one orbit on the
chambers of Γ.
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Groups of regular hypertopes

Let Γ be a regular hypertope and Φ one of its chambers. Then for each
i ∈ I there exists and involutory type-preserving automorphism ρi that
interchanges Φ with its i-adjacent chamber Φi .

AutI (Γ) is generated by the distinguished generators {ρ0, ρ1, . . . , ρn−1},
where n = |I |, which satisfy

the relations implicit in the C−diagram, the complete graph on n
vertices whose vertices are labeled by the generators and the edges
between vertices labelled with ρi and ρj labeled by o(ρiρj) (with the
usual convention of omitting the edges labeled by 2);

and the intersection property IP

〈ρi | i ∈ I 〉 ∩ 〈ρi | i ∈ J〉 = 〈ρi | i ∈ I ∩ J〉, ∀I , J ⊆ {0, . . . , n − 1}.
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C−Groups

A pair (G ,R), where G is a group and R = {ρ0, . . . , ρn−1} its generating
set of involutions that satisfy the IP, is called a C−group.

The group 〈ρ0, ρ1, ρ2 | ρ2
0 = ρ2

1 = ρ2
2 = (ρ0ρ1ρ2ρ1)2 = 1〉 with the

triangular C−diagram is the group of automorphisms of the hypermap
(3, 3, 3)(2,0).

A hypertope is said to be proper when the Coxeter diagram of its type
preserving automorphism group is not linear.
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Coset geometries

Construction of an incidence geometry from a group (Tits, 1956):

Let G be a group and (Gi )i∈I a finite family of subgroups of G . With X , ∗
and t defined as

X is the set of all cosets Gig , g ∈ G , i ∈ I ;

t : X → I defined by t(Gig) = i ;

Gig1 ∗ Gjg2 if a and only if Gig1 ∩ Gjg2 6= ∅;

Γ := (X , ∗, t, I ) is an incidence system.

Question: When is such an incidence geometry a hypertope?
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Constraction of a regular hypertopes from a group

Theorem (Fernandes, Leemans and AIW, 2014) Given that
(G , {ρ0, ρ1, ρ2}) is a C−group of rank 3, the coset geometry
Γ(G , (〈ρ1, ρ2〉, 〈ρ0, ρ2〉, 〈ρ0, ρ1〉)) is thin if and only if G acts faithfully on
Γ and is transitive on chambers. Moreover, if it is thin it is strongly
chamber-connected.

Unfortunately in higher ranks thinness need not suffice!

Theorem (Fernandes, Leemans and AIW, 2014) Given that
(G ,S = {ρ0, ρ1, . . . , ρn−1}) is a C−group of rank n, the coset geometry
Γ := Γ(G , (Gi )i∈I ) with Gi := 〈ρj | ρj ∈ S , j ∈ I \ {i}〉 for all
i ∈ I := {0, 1, . . . , n − 1}, if Γ is flag transitive, then Γ is regular incidence
geometry (it is thin, SCC and regular giving a regular hypertope).
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Universal hypertopes

Every Coxeter group is a type-preserving automorphism group of a regular
hypertope called the universal hypertope (associated with the Coxeter
group).

The type-preserving automorphism group of every regular hypertope H, is
a quotient of a Coxeter group C.

The universal hypertope associated with the Coxeter group C is then called
the universal cover of the hypertope H and the Coxeter diagram of H is
the diagram of its universal cover.

A regular hypertope H with the universal cover whose Coxeter group is C
is said to be of type C (where, for convenience, C names both Coxeter
group and its diagram).
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Hypertopes of locally spherical type

A regular hypertope is said to be of spherical type if its Coxeter diagram is
a diagram of a finite irreducible Coxeter group. It is said to be spherical if
its Coxeter diagram is a union of diagrams of finite irreducible Coxeter
groups.

A projective regular hypertope is a hypertope obtained by factoring a
spherical regular hypertope by the central symmetry (provided it exists).

A locally spherical regular hypertope is a hypertope whose (all) proper
residues are spherical.

Theorem Let H be a regular hypertope of spherical type. Then
(1) H is either a spherical or a projective hypertope;
(2) H is locally spherical.
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Examples

Hypertopes of type Bn:

hypercube (spherical)
hemi-hypercube (projective).

Hypertope of type D4:

Type 0: red vertices of the hypercube
Type 1: white vertices of the hypercube
Type 2: faces of the hypercube with bi-coloured vertices
Type 3: cubes of the hypercube with bi-coloured vertices

The following is the complete list of locally spherical regular hypertopes of
spherical type.
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Locally spherical hypertopes of euclidean type

A regular hypertope of euclidean type is a hypertope whose Coxeter
diagram is a diagram of an irreducible Coxeter group of euclidean type.

⇒ Proper residues of regular hypertopes of euclidean type are either spherical or

projective.

A regular toroidal hypertope of rank n + 1 is a quotient of a regular
universal hypertope of rank n + 1 of euclidean type by a (normal)
subgroup generated by n independent translations (in En).

Theorem Every finite locally spherical regular hypertope of euclidean type
is a toroidal hypertope (briefly called a toroid).
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Example: semi-regular tessellation of E 3

Hypertope of (euclidean) type B̃3

Type 0: (red) vertices of the tessellation
Type 1: edges of the tessellation
Type 2: octahedral facets of the tessellation
Type 3: tetrahedral facets of the tessellation
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Toroids of rank 3

The regular toroidal maps and hypermaps, that is rank 3 toroids, had been
classified in the following families:

{4, 4}(s,0), {4, 4}(s,s),where s ≥ 2

{3, 6}(s,0) where s ≥ 2 , {3, 6}(s,s), where s ≥ 1

(3, 3, 3)(s,0) where s ≥ 2, (3, 3, 3)(s,s) where s ≥ 2

(The vectors in the subscripts determine in each case the translation subgroup

used, and the restriction on s guaranties that the hypertopes are large enough so

that they do not degenerate.)

Note: Chiral maps and hypermaps have also been classified.
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Toroids of rank 4

There is only one affine Coxeter group with linear diagram in rank 4 and
two with non-linear diagrams.

Both groups with non-linear diagrams are subgroups in the group with
linear diagram:

C̃3 B̃3 Ã3
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Cubic toroids

Let Λn be the group of all translational symmetries of En (i.e. the lattice
Zn) and Λn

s the sub-lattice generated by s := (sk , 0n−k), k ∈ {1, . . . , n}.

Theorem (McMullen & Schulte 2002) Each regular rank n + 1 toroid of
type C̃n, also known as a cubic (n + 1)-toroid (corresponding to a regular
tessellation of n-torus by n-cubes), belong to one of the following three
infinite families {C̃n}s = {4, 3n−2, 4}s where

s = (sk , 0n−k) with s ≥ 2 and k = 1, 2, or n,

and where the quotient of {4, 3n−2, 4} by lattice Λn
s is denoted simply by

{4, 3n−2, 4}s.
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Families of cubic 4-toroids

{4, 3, 4}(s,0,0) {4, 3, 4}(s,s,0) {4, 3, 4}(s,s,s)

47 / 1



Proper toroidal hypertopes in higher ranks

Theorem (Ens 2016)

Finite toroidal hypertopes of rank 4 and type B̃3, belong to one of the
following three infinite families of type {B̃3}s where

s = (2s, 0, 0) or (s, s, 0) with s ≥ 2, or (2s, 2s, 2s) with s ≥ 1.

Finite toroidal hypertopes of rank 4 and type Ã3, belong to one of the
following three infinite families of type {Ã3}s = (3, 3, 3, 3)s where

s = (2s, 0, 0) or (s, s, 0) with s ≥ 2, or (2s, 2s, 2s) with s ≥ 1.

In both cases the quotient of the universal hypertope of type C by lattice Λn
s

is denoted simply by Cs.

Note: Classification of toroidal hypertopes in higher ranks is partially completed
(work in progress with Leemans and Schulte).

48 / 1



Locally spherical hypertopes of hyperbolic type

A regular locally spherical hypertope is of hyperbolic type if it is a
hypertope whose Coxeter diagram is the same as the Coxeter diagram of a
compact hyperbolic Coxeter group (that is, a group generated by
hyperbolic reflexions with compact fundamental domain).

⇒ Regular locally spherical hypertopes are either of spherical, euclidean,
or hyperbolic type.

Compact hyperbolic Coxeter groups exist only in ranks 3, 4, and 5.
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Examples of hyperbolic type

Rank 3 regular hypertopes of hyperbolic type are

non-degenerate maps with Coxeter diagrams are

• p • q • with 3 ≤ p, q <∞ and 1
p + 1

q <
1
2 , or

non-degenerate hypermaps with Coxeter diagrams

•
l•

k

m •
with 3 ≤ k , l ,m <∞ and 1

k + 1
l + 1

m < 1.
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The classical regular star-polytope { 5
2 , 3, 5} in E 4, obtained by a sequence of

several stellations of 120-cell {5, 3, 3}, is a finite locally spherical hypertope of

hyperbolic type {5, 3, 5}.

The projection of great stellated 120-cell on the Coxeter plane:

The automorphism group of the polytope is H4 = [5, 3, 3] = [5, 3, 5|3] (of order 14400) can be

obtained from [5, 3, 5] by imposing the extra relation (ρ0ρ1ρ2ρ3ρ2ρ1)3 = id .
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THANK YOU

53 / 1


