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Introduction



Hypergraphs
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A hypergraph is a generalization of a graph in which an edge may
have any number of vertices.

k-uniform hypergraph: every edge holds k vertices.

Example. 3-uniform hypergraph on 5 vertices, the edge set is
E = {v1v2v3, v3v4v5}.
2-uniform hypergraph = (ordinary) graph.
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Hypergraphs
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The neighborhood Γ(U) of U is a set of all vertices x such
that x ∪ U is an edge.

Example. The neighborhood of {v2, v3} is Γ(v2, v3) = v1.
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Spectral graph theory

Spectral graph theory (∼1950s) aims to obtain structural
information about graphs from their spectra.

Many known results for graphs, e.g:

Regularity and bipartiteness can be determined from the
spectrum

Eigenvalue bounds on the chromatic number

Almost all trees or strongly regular graphs are cospectral

Haemers’s conjecture: almost all graphs are determined by
their spectrum

. . .
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Spectral hypergraph theory

Spectral hypergraph theory (∼1990s) aims to obtain
structural information about hypergraphs from their spectra.

Some results in spectral hypergraph theory include (see e.g.
Cooper, Dutle, 2012):

Regularity and bipartiteness can be determined from
hypergraph spectrum

Eigenvalue bounds on the chromatic number

. . .
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Spectral hypergraph theory

Very few results are known for spectral characterizations of
hypergraphs.

Bu, Zhou, and Wei (2014) showed that the following families
of hypergraphs are determined by their spectra:

complete k-uniform hypergraphs and their complements,

complete k-uniform hypergraphs without one edge,

subhypergraphs of complete (n − 1)-uniform hypergraphs.
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Goal

Two hypergraphs are cospectral if they have the same
spectrum (eigenvalues).

Studying cospectral graphs (hypergraphs) helps us reveal
which structural properties cannot be deduced from the
spectra.

Methods to construct cospectral graphs include:

GM-switching (Godsil, McKay, 1982),

WQH-switching (Wang, Qiu, Hu, 2019),

. . .

Our goal is to obtain new methods to construct cospectral
hypergraphs.
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Representations of hypergraphs

The spectrum of a hypergraph can be calculated in different
ways based on how the hypergraph is represented:

1 adjacency tensor, or hypermatrix (Cooper, Dutle, 2012),
2 integer matrix with number of common edges as its

entries (Feng, Li, 1996),
3 other: {0, 1}-adjacency matrix, distance matrix, . . .

We focus on the first two representations.
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Switching methods for hypergraphs

The GM-switching procedure has been generalized to
hypergraphs:

GM-switching WQH-switching
Godsil, McKay (1982) Wang, Qiu, Hu (2019)

↓ ↓
adjacency tensor: Bu, Zhou, Wei (2014) ?

matrix representation: Sarkar, Banerjee (2020) ?
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Constructing cospectral hypergraphs
with respect to tensors



Adjacency tensor of a hypergraph

For a k-uniform hypergraph on n vertices we can define the
adjacency tensor A = (ai1···ik ) of order k dimension n:

ai1···ik =

{
1

(k−1)!
, {i1, . . . , ik} ∈ E ,

0, otherwise.

NB! The adjacency tensor can be only defined for uniform
hypergraphs.

Computing eigenvalues of a tensor is NP-hard (Hillar, Lim,
2013).
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Adjacency tensor of a hypergraph

ai1···ik =

{
1

(k−1)!
, {i1, . . . , ik} ∈ E ,

0, otherwise.

v1

v2

v3

v4

v5

Example. Tensor of dimension 5 order 3:

v1 v2 v3 v4 v5

v1

v2

v3

v4
v5

1
2
3
4
5
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Eigenvalues of a tensor

What are the eigenvalues of a tensor?

For a matrix A dimension n:

λ is an eigenvalue if Ax = λx for some vector x ̸= 0 and
x⊤x = 1, or equivalently,

λ is root of characteristic polynomial

φA(λ) = det(λIn − A) .
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Eigenvalues of a tensor

What are the eigenvalues of a tensor?

For a tensor A of order k dimension n there are two
definitions (Qi, 2005, and Lim, 2005):

λ is an eigenvalue if it is a root of characteristic

polynomial ΦA(λ) = det(λIn −A) .

λ is an E-eigenvalue if Ax = λx for some x ̸= 0 and
x⊤x = 1. The tensor product in Ax is defined similarly to
the usual matrix product (Shao, 2013).

Two hypergraphs are cospectral (E-cospectral) if they have
the same eigenvalues (E-eigenvalues).

In this talk we will construct hypergraphs that are both
cospectral and E-cospectral.
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GM-switching (ordinary graphs)

Theorem (Godsil, McKay, 1982)

Let G be a graph whose vertex set admits a partition
C1 ∪ C2 ∪ · · · ∪ Cm ∪ D such that:

1 for any i ≤ m each vertex in D has either 0, 1
2 |Ci |, or |Ci |

neighbors in Ci .

2 (Equitable partition) for all i , j ≤ m every vertex in Ci has
the same number of neighbors in Cj .

To construct graph H, for any v ∈ D that has 1
2 |Ci | neighbors in

Ci switch the adjacency of {u, v} for all u ∈ Ci . Then H is a
cospectral graph with G .

D DC1 C1
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WQH-switching (ordinary graphs)

Theorem (Wang, Qiu, Hu, 2019)

Let G be a graph whose vertex set admits a partition C1 ∪ C2 ∪ D
such that:

1 |C1| = |C2| .
2 There exists a constant c such that for any v ∈ Ci we have

|Γ(v) ∩ Cj | − |Γ(v) ∩ Ci | = c , where {i , j} = {1, 2}.
3 For any vertex v ∈ D we have either

Γ(v) ∩ (C1 ∪ C2) ∈ {C1,C2} or |Γ(v) ∩ C1| = |Γ(v) ∩ C2| .
To construct a graph H, for any v ∈ D such that
Γ(v) ∩ (C1 ∪ C2) ∈ {C1,C2} switch the adjacency of {u, v} for any
u ∈ C1 ∪ C2. Then H is a cospectral graph with G .

A generalized version of this switching for partition of vertices into
2m + 1 subsets C1 ∪ · · · ∪ C2m ∪ D was described by Qiu, Ju,
Wang (2020).
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WQH-switching (example)

C1 C2

D

u1

u2

u3 u4

u5

u6

v1 v2

|Γ(u2) ∩ C2| − |Γ(u2) ∩ C2| = 2− 1 = 1

C1 C2

D

u1

u2

u3 u4

u5

u6

v1 v2

|Γ(u1) ∩ C2| − |Γ(u1) ∩ C2| = 1− 0 = 1

|Γ(v2) ∩ C1| = |Γ(v2) ∩ C2|
Γ(v1) ∩ (C1 ∪ C2) = C1

. . .

Switching edges: v1u1
v1u2
v1u3

v1u4
v1u5
v1u6
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New switching for hypergraphs (tensors)

Theorem 1 (Abiad, K)

Let G be a k-uniform hypergraph whose vertex set admits a
partition C1 ∪ C2 ∪ D, and such that:

1 |C1| = |C2| .

2 Any edge has at least k − 1 vertices in D .

3 For any k − 1 distinct vertices u2, . . . , uk from D, we have
Γ(u2, . . . , uk) ∩ (C1 ∪ C2) ∈ {C1,C2} or

|Γ(u2, . . . , uk) ∩ C1| = |Γ(u2, . . . , uk) ∩ C2| .
To construct a hypergraph H, for any {u2, . . . , uk} ⊆ D such that
its neighbors in C1 ∪ C2 are all in C1 (or C2), switch the adjacency
of {u1, . . . , uk} for all u1 ∈ C1 ∪ C2. Then H is a k-uniform
cospectral (E -cospectral) hypergraph with G .

Condition 2 implies that in C1 ∪ C2 no two vertices are adjacent .
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New switching for hypergraphs (tensors)

v1

v2

v3
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u6

D

C1 C2

v2v3u1
v2v3u4

v1v3u2

v1v3u3
v1v3u4
v1v3u5

Edges:
v1v2u1
v1v2u2
v1v2u3

|C1| = |C2| = 3.

Every edge has 2 vertices in D.

Γ(v1, v2) = C1

(no neighbors in C2);

v2, v3 have one neighbor in each
C1 and C2;

v1, v3 have 2 neighbors in each
C1 and C2.
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New switching for hypergraphs (tensors)

v1

v2

v3

u1

u2

u3

u4

u5

u6

v1v2u1
v1v2u2
v1v2u3

v2v3u1
v2v3u4

v1v3u2

v1v3u3
v1v3u4
v1v3u5

v1

v2

v3

u1

u2

u3

u4

u5

u6
v1v2u4
v1v2u5
v1v2u6

Common edges:

Switching edges:

D

C1 C2
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New switching for hypergraphs (tensors)

Theorem 1+ (Abiad, K)

Let G be a k-uniform hypergraph whose vertex set admits a
partition C1 ∪ C2 ∪ · · · ∪ C2m ∪ D for some m ≥ 1, and such that:

1 |Ci | = |Ci+1| for all odd i < 2m.

2 Any edge has at least k − 1 vertices in D .

3 For any odd i < 2m and k − 1 distinct vertices u2, . . . , uk
from D, we have Γ(u2, . . . , uk) ∩ (Ci ∪ Ci+1) ∈ {Ci ,Ci+1} or

|Γ(u2, . . . , uk) ∩ Ci | = |Γ(u2, . . . , uk) ∩ Ci+1| .
To construct a hypergraph H, for any {u2, . . . , uk} ⊆ D such that
its neighbors in Ci ∪ Ci+1 are all in Ci (or Ci+1), switch the
adjacency of {u1, . . . , uk} for all u1 ∈ Ci ∪ Ci+1. Then H is a
k-uniform cospectral (E -cospectral) hypergraph with G .
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Constructing cospectral hypergraphs
with respect to matrices



Matrix representation of a hypergraph

First proposed by Feng and Li (1996), a similar definition used by
Sarkar and Banerjee (2020) in GM-switching for hypergraphs.

A =


0 1 2 1
1 0 1 0
2 1 0 1
1 0 1 0


v1

v2

v3

v4

The entry aij of A = (aij) is the number of edges that contain both
vi and vj .

It is not as immediately clear what the edges are just from the
matrix alone as it is when using the tensor definition, but the
computation of eigenvalues can be done in polynomial time.
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New switching for hypergraphs (matrices)

Theorem 2 (Abiad, K)

Let G be a k-uniform hypergraph whose vertex set admits a
partition C1 ∪ C2 ∪ · · · ∪ C2m ∪ D for some m ≥ 1, and such that:

1 |Ci | = t for all i and some t, while |D| = k − 1.

2 Any edge of G has 0 or k − 1 vertices in D.

3 For any odd i < 2m, we have either
Γ(D) ∩ (Ci ∪ Ci+1) = Ci or |Γ(D) ∩ Ci | = |Γ(D) ∩ Ci+1| .

4 For the adjacency matrix A and each i , j ≤ 2m there exists αij

such that∑
u∈Ci

Auv =
∑
u∈Ci

Avu =
∑
u∈Cj

Auw =
∑
u∈Cj

Awu = αij for v ∈ Cj , w ∈ Ci .

To construct a hypergraph H, remove all edges (v ,D) such that
v ∈ Ci and Γ(D) ⊇ Ci and add edges (u,D) with u ∈ Ci+1, for all
odd i < 2m. Then H is cospectral to G with respect to matrix
representation.
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New switching for hypergraphs (matrices)

u2
u3

u1

u9
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u4
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u10

u11

u12

C1

C2

C3

C4

v1 v2D

|Ci | = 3 for i = 1, 2, 3, 4.

|D| = 2 in 3-uniform
hypergraph.

Every edge has 0 or 2
vertices in D.

v1, v2 are adjacent to all
of C1 and none of C2.

v1, v2 are adjacent to one
vertex in both C3 or C4.

number of neighbors in
Cj is the same for all
v ∈ Ci , i , j = 1, 2, 3, 4.
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New switching for hypergraphs (matrices)

v1 v2
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u3

u1

u9
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u10
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v1 v2

u2
u3

u1

u9
u7

u8

u4

u5

u6

u10

u11

u12

D

C1

C2

C3

C4

Common edges:

u1u2u3
u1u4u5
u2u5u6
u3u4u6

u7u10u12
u8u10u11
u9u11u12

u7v1v2
u10v1v2

Switching edges:

v1v2u1
v1v2u2
v1v2u3

v1v2u4
v1v2u5
v1v2u6
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Conclusion and future research



Conclusion and future research

GM-switching WQH-switching other methods?
Godsil, McKay (1982) Wang, Qiu, Hu (2019)

↓ ↓ ↓
tensor: Bu, Zhou, Wei (2014) Theorem 1 ?

matrix: Sarkar, Banerjee (2020) Theorem 2 ?

What other results of spectral graph theory admit an
extension to hypergraphs?

Tools that could be used to get new results on spectral
characterization of hypergraphs?
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Thank you for your attention!
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