イロト イポト イヨト イヨト

Symmetric substructures in tetravalent edge-transitive bicirculant graphs

Alejandra Ramos-Rivera

University of Ljubljana, FMF & IMFM

AGTIW 12.04.2022

A. Ramos-Rivera (joint work with P. Potočnik, M. Toledo, S. Wilson)

イロト イロト イヨト イヨト

G-transitive graphs

The graph Γ is said to be *G***-vertex-**, *G***-edge-** and *G***-arc-transitive for some G \leq \operatorname{Aut}(\Gamma) if** *G* **acts transitively on V(\Gamma), E(\Gamma) and A(\Gamma), respectively.**

In the case of $G = Aut(\Gamma)$, we omit the prefix G and simply write vertex-transitive, edge-transitive and arc-transitive.

Cycle structur

Bicirculant graphs 00 Rose Window graphs

References

AGTIW

Cubic vertex-transitive graphs

In the area of symmetries of graphs, **finite connected 3-regular vertex-transitive graphs** (cubic vertex-transitive graphs, CVT) play a very special role.

- Trivalent symmetric graphs on up to 768 vertices,
- Cubic vertex-transitive graphs on up to 1280 vertices,
- Semiregular automorphisms of vertex-transitive cubic graphs,
- Hamiltonian cycles in cubic Cayley graphs,
- Cubic arc-transitive k-multicirculants,
- Bounding the order of the vertex-stabiliser in 3-valent vertextransitive...,

イロト イボト イヨト イヨト

- Symmetry properties of generalized graph truncations,
- Non-Cayley vertex-transitive graphs of order twice the product of two odd primes,
- ...

Cycle structure

Bicirculant graphs

Rose Window graphs

References

Cubic vertex-transitive graphs - Families

A. Ramos-Rivera (joint work with P. Potočnik, M. Toledo, S. Wilson)

Symmetric substructures in tetravalent edge-transitive bicirculant graphs

AGTIW

イロト イロト イヨト イヨト

Cubic vertex-transitive graphs - Families

1 Prisms

- 2 Double generalised Petersen graphs
- 3 Split Praegex-Xu graphs
- 4 Honeycomb toroidal.
- 5 Cyclic Haar graphs.
- 6 Möbius ladder
- **7** Tricirculants of Type ...
- 8 ...

イロト イロト イヨト イヨト

Cubic vertex-transitive graphs - Properties

- 1 for which parameters the property X holds?
- 2 Girth?
- 3 Is it a Cayley graph?
- 4 Edge-signature?
- 5 Maps?
- 6 Automorphism group

A. Ramos-Rivera (joint work with P. Potočnik, M. Toledo, S. Wilson) Symmetric substructures in tetravalent edge-transitive bicirculant graphs

Rose Window graphs

References

AGTIW

Cubic vertex-transitive graphs - DATABASE

CVTinfo[34, 1] := [6, Haar(17, 1, 4)]CVTinfo[34, 2] := [4, Moeb(17), Haar(17, 1, 2), MapT3b(8, 1)] $CVTinfo[34, 3] := [6, Haar(17, 1, 3), MapP_17]$ CVTinfo[34, 4] := [4, Prism(17), GenPet(17, 1)]CVTinfo[34, 5] := [7, GenPet(17, 4)]CVTinfo[36, 1] := [4, Moeb(18)]CVTinfo[36, 2] := [7] $CVTinfo[36, 3] := [6, Haar(18, 1, 3), MapP_18]$ CVTinfo[36, 4] := [4, Haar(18, 1, 9), Gamma(9)] $CVTinfo[36, 5] := [6, Haar(18, 1, 6), MapD_6]$ CVTinfo[36, 6] := [6, Haar(18, 1, 5)]CVTinfo[36, 7] := [6, Haar(18, 1, 4)]CVTinfo[36, 8] := [4, Prism(18), GenPet(18, 1), Haar(18, 1, 2), MapT3a(9, 1)]CVTinfo[36, 9] := [4] $CVTinfo[36, 10] := [6, MapS_6, MapT3a_(3, 3)]$ CVTinfo[36, 11] := [6]CVTinfo[36, 12] := [4]CVTinfo[38, 1] := [4, Moeb(19), Haar(19, 1, 2), MapT3b(9, 1)]CVTinfo[38, 2] := [6, Haar(19, 1, 8), MapT2(3, 2)] $CVTinfo[38, 3] := [6, Haar(19, 1, 3), MapP_19]$ CVTinfo[38, 4] := [6, Haar(19, 1, 4)]CVTinfo[38, 5] := [4, Prism(19), GenPet(19, 1)] CVTinfo[40, 1] := [4, Moeb(20)]CVTinfo[40, 2] := [4, Haar(20, 1, 10), MapT3a(2, 5), Gamma(10)]CVTinfo[40, 3] := [6, GenPet(20, 9), MapT3b(4, 2)]CVTinfo[40, 4] := [6, Haar(20, 1, 4)]イロト イ団ト イモト イモト

A. Ramos-Rivera (joint work with P. Potočnik, M. Toledo, S. Wilson)

イロト イヨト イヨト イヨト

AGTIW

Prisms

- Name: Prism
- Parameters: n; $n \in \mathbb{Z}$, $n \ge 3$.
- Vertex-set: $\mathbb{Z}_n \times \mathbb{Z}_2$.
- Edge-set: $E = E_1 \cup E_2$, $E_1 = \{\{(x, 0), (x, 1)\} : x \in \mathbb{Z}_n\},$ $E_2 = \{\{(x, i), (x + 1, i)\} : x \in \mathbb{Z}_n\}.$
- Vertex-transitivity: All Prisms are know to be vertex-transitive.
- **Comments:** Aut(Prism(n)) is isomorphic either to D_n × C₂ if n ≠ 4 or to Sym(4) × C₂ if n = 4; note that in the latter case, the prism is in fact isomorphic to the skeleton of the 3-dimensional cube.

Möbius ladder

- Name: Moeb
- Parameters: n; n ∈ Z, n ≥ 2.
- Vertex-set: Z_{2n}.
- Edge-set: E = E₁ ∪ E₂,
 - $E_1 = \{\{x, x+1\} : x \in \mathbb{Z}_{2n}\}, \\ E_2 = \{\{x, x+n\}\} : x \in \mathbb{Z}_{2n}\}.$
- Vertex-transitivity: All Möbius ladders are known to be vertex-transitive.
- Comments: Unless $n \in \{2, 3\}$, the automorphism group of Moeb(n) is isomorphic to the dihedral group D_{2n} of order 4n, having two orbits on the edges of Moeb(n). On the other hand, $Moeb(2) \cong K_4$ and $Moeb(3) \cong K_{3,3}$, a complete bipartite graph, are both arc-transitive.

Generalised Petersen graphs

- Name: GP
- Parameters: $n, k; n, k \in \mathbb{Z}, n \ge 3, 1 \le k \le \frac{n}{2}$.
- Vertex-set: $\mathbb{Z}_n \times \mathbb{Z}_2$.
- **Edge-set:** $E = E_1 \cup E_2 \cup E_3$,

A. Ramos-Rivera (joint work with P. Potočnik, M. Toledo, S. Wilson)

How can we get families of CVT with certain properties?

A. Ramos-Rivera (joint work with P. Potočnik, M. Toledo, S. Wilson) Symmetric substructures in tetravalent edge-transitive bicirculant graphs

・ロト ・四ト ・ヨト ・ヨト

Cubic vertex-transitive graphs

Let Γ be a cubic graph with $G \leq \operatorname{Aut}(\Gamma)$ acting transitively on $\operatorname{V}(\Gamma)$. Fix a vertex $v \in \operatorname{V}(\Gamma)$ and consider the permutation group $G_v^{\Gamma(v)}$ induced by the action of the stabiliser G_v on the neighbourhood $\Gamma(v)$.

- 1 If $G_{\nu}^{\Gamma(\nu)}$ is transitive, then G acts transitively on the arc-set $A(\Gamma)$.
- If G_ν^{Γ(ν)} is a trivial group, then the assumed connectivity of Γ implies that G_ν is trivial and hence that G acts regularly on V(Γ). If we have taken G to be equal to Aut(Γ), then Γ is in fact a graphical regular representation of G, or a zero-symmetric graph.
- **3** G is of **Type** 2^* (2 orbits on the set of arcs).

Cubic vertex-transitive graphs - Type 2*

- Let Γ be a cubic vertex-transitive graph admitting a group $G \leq Aut(\Gamma)$ with exactly two arc-orbits.
- Let v ∈ V(Γ) and note that the stabiliser G_v has two orbits on the arcs incident to v. That is, a non-trivial element of G_v interchanges two of the arcs incident to v, while fixing the third one.
- Let x be the arc incident to v that is fixed by G_v, and let M = x^G. The set M is a matching and the two orbits of G on the arcs of Γ are precisely M and A(Γ) \ M.
- If Γ is neither a prism or a Möbius ladder, then the merge Γ[M] must be a simple graph.

Cycle structur

Bicirculant graphs

Rose Window graphs

References

Cubic vertex-transitive graphs - Type 2^* - GP(16,7)

A. Ramos-Rivera (joint work with P. Potočnik, M. Toledo, S. Wilson)

Symmetric substructures in tetravalent edge-transitive bicirculant graphs

・ロト ・母 ト ・ヨ ト ・ ヨ ・ クタぐ

Cubic vertex-transitive graphs - Type 2^* - GP(16,7)

Theorem

Let $\Gamma = \operatorname{GP}(n, k)$ be a generalized Petersen graph. Then

- 1 it is symmetric if and only if $(n,k) \in \{(4,1), (5,2), (8,3), (10,2), (10,3), (12,5), (24,5)\},\$
- 2 it is vertex-transitive if and only if $k^2 \equiv \pm 1 \pmod{n}$ or if n = 10 and k = 2,
- 3 it is a Cayley graph if and only if $k^2 \equiv 1 \pmod{n}$.
 - Frucht, R., Graver, J. E., Watkins, M. E., *The groups of the generalized Petersen graphs*, Math. Proc. Camb. Philos. Soc., Vol. 70, Cambridge Univ. Press, (1971) 211–218.
 - Nedela, R., Škoviera, M. [1995], *Which generalized Petersen graphs are Cayley graphs?*, J. Graph Theory **19(1)** (1995), 1–11.
 - Saražin, M. L., A Note on the Generalized Petersen Graphs That Are Also Cayley Graphs, J. Comb. Theory, Ser. B 69 (1997), 226–229.

A. Ramos-Rivera (joint work with P. Potočnik, M. Toledo, S. Wilson)

Cycle structur

Bicirculant graphs

Rose Window graphs

References

Cubic vertex-transitive graphs - Type 2^* - GP(16,7)

A. Ramos-Rivera (joint work with P. Potočnik, M. Toledo, S. Wilson)

Symmetric substructures in tetravalent edge-transitive bicirculant graphs

AGTIW

Cycle structur

Bicirculant graphs

Rose Window graphs

References

Cubic vertex-transitive graphs - Type 2^* - GP(16,7)

A. Ramos-Rivera (joint work with P. Potočnik, M. Toledo, S. Wilson)

Symmetric substructures in tetravalent edge-transitive bicirculant graphs

・ロット (日) (日) (日) (日) (日)

Cycle structur

Bicirculant graphs

Rose Window graphs

References

Cubic vertex-transitive graphs - Type 2^* - GP(16,7)

A. Ramos-Rivera (joint work with P. Potočnik, M. Toledo, S. Wilson)

Symmetric substructures in tetravalent edge-transitive bicirculant graphs

◆ロト ◆母 ト ◆臣 ト ◆臣 ト ○臣 = のへで

Cycle structur

Bicirculant graphs

Rose Window graphs

References

Cubic vertex-transitive graphs - Type 2^* - GP(16,7)

A. Ramos-Rivera (joint work with P. Potočnik, M. Toledo, S. Wilson)

Symmetric substructures in tetravalent edge-transitive bicirculant graphs

◆ロト ◆母 ト ◆臣 ト ◆臣 ト ○臣 = のへで

Cycle structur

Bicirculant graphs

Rose Window graphs

References

Cubic vertex-transitive graphs - Type 2* - GP(16,7) - >

A. Ramos-Rivera (joint work with P. Potočnik, M. Toledo, S. Wilson)

イロト イロト イヨト イヨト

Cubic vertex-transitive graphs - Type 2* - GP(18,7) - >

A cycle structure in a tetravalent graph Γ is a partition \mathcal{Y} of its edges into cycles such that the subgroup $\operatorname{Aut}(\mathcal{Y})$ of $\operatorname{Aut}(\Gamma)$ which preserves \mathcal{Y} is transitive on the arcs of Γ .

A. Ramos-Rivera (joint work with P. Potočnik, M. Toledo, S. Wilson) Symmetric substructures in tetravalent edge-transitive bicirculant graphs AGTIW

Bicirculant graphs

イロト イポト イヨト イヨト

Cubic vertex-transitive graphs - Merge

Let Γ be a *k*-valent graph with a matching *M*. Let \overline{M} be the the set of edges containing an arc in *M*. The **merge** of Γ by *M* is the graph $\Gamma[M](\Gamma) = (V', D', \text{beg}', \text{inv}')$ such that:

1 V' =
$$\overline{M}$$
;

$$2 D' = D(\Gamma) \setminus M;$$

3 beg' x is the unique edge
$$\{y, y^{-1}\} \in \overline{M}$$
 with beg _{Γ} x $\in \{ beg_{\Gamma} y, beg_{\Gamma} y^{-1} \}$;

4 $\operatorname{inv}' x = \operatorname{inv}_{\Gamma} x$.

Informally, Λ is the graph obtained by merging the endvertices (contracting) of every edge in \overline{M} .

Cycle structur

Bicirculant graphs 00 Rose Window graphs

References

CVT Type 2* ↓ Arc-transitive 4-valent graph CS

A. Ramos-Rivera (joint work with P. Potočnik, M. Toledo, S. Wilson)

Cycle structur

Bicirculant graphs

Rose Window graphs

イロト イポト イヨト イヨト

References

Constructing cubic vertex-transitive graphs

CVT Type 2* ↑ Arc-transitive 4-valent graph CS

A. Ramos-Rivera (joint work with P. Potočnik, M. Toledo, S. Wilson)

Bicirculant graphs

Rose Window graphs

Constructing cubic vertex-transitive graphs - PX(6, 1)

Cycle structure in a tetravalent graph Γ :

A. Ramos-Rivera (joint work with P. Potočnik, M. Toledo, S. Wilson)

Cycle structure

Bicirculant graphs

Rose Window graphs

References

Constructing cubic vertex-transitive graphs

A. Ramos-Rivera (joint work with P. Potočnik, M. Toledo, S. Wilson)

Symmetric substructures in tetravalent edge-transitive bicirculant graphs

・ロット (日) (日) (日) (日) (日)

Cycle structur

Bicirculant graphs 00 Rose Window graphs

イロト イ団ト イモト イモト

References

Splits of cycle structure

The input of this construction is a pair (Γ, \mathcal{Y}) , where Γ is a tetravalent arc-transitive graph and \mathcal{Y} is an arc-transitive cycle decomposition of Γ . The output is the graph $\operatorname{Sp}(\Gamma, \mathcal{Y})$, the vertices of which are the pairs (v, C) where $v \in V(\Gamma)$, $C \in \mathcal{Y}$ and v lies on the cycle C, and two vertices (v_1, C_1) and (v_2, C_2) are adjacent if and only if either $v_1 = v_2$ and $C_1 \neq C_2$, or $C_1 = C_2$ and v_1, v_2 is an edge of C_1 . Note that the set of edges of the form $\{(v, C_1), (v, C_2)\}$ constitute a perfect matching, $M_{\mathcal{Y}}$.

イロト イポト イヨト イヨト

Constructing cubic vertex-transitigve graphs

A. Ramos-Rivera (joint work with P. Potočnik, M. Toledo, S. Wilson)

Consistent cycles

Let Γ be a graph admitting an arc-transitive group of automorphisms $G \leq \operatorname{Aut}(\Gamma)$. A directed (but not rooted) cycle $\vec{C} = (v_0, v_1, \dots, v_{r-1})$ of Γ is said to be *G*-consistent if there exists $g \in G$ mapping each v_i to v_{i+1} (where the indices are computed modulo r). In this case g is said to be a **shunt** of \vec{C} . Of course, the *inverse* $\vec{C}^{-1} = (v_0, v_{r-1}, v_{r-2}, \dots, v_1)$ is G-consistent if and only if \vec{C} is G-consistent. Thus an (undirected) cycle is said to be G-consistent if both of its two corresponding directed cycles are G-consistent.

Cycle structure

A cycle structure in a tetravalent graph Γ is a partition \mathcal{Y} of its edges into cycles such that the subgroup $\operatorname{Aut}(\mathcal{Y})$ of $\operatorname{Aut}(\Gamma)$ which preserves \mathcal{Y} is transitive on the arcs of Γ .

The cycles of a cycle structure \mathcal{Y} must be **consistent** and all of the same length; in fact, they must all be within the same orbit of consistent cycles under Aut(Γ).

Two cycle structures \mathcal{Y} and \mathcal{Y}' in a graph Γ are said to be *isomorphic* if there exists a symmetry of Γ mapping the cycles in \mathcal{Y} to the cycles in \mathcal{Y}' .

AGTIW

We will call a cycle structure **bipartite** provided that we can partition the cycles of \mathcal{Y} into two colors, so that each vertex is incident to one cycle of each color.

A. Ramos-Rivera (joint work with P. Potočnik, M. Toledo, S. Wilson) Symmetric substructures in tetravalent edge-transitive bicirculant graphs

イロト イポト イヨト イヨト

Cycle structure

Lemma

Let Γ is a tetravalent arc-transitive graph and \mathcal{Y} is an arc-transitive cycle decomposition of Γ . Then $|\operatorname{Aut}(\operatorname{Sp}(\Gamma, \mathcal{Y}))| \ge |\operatorname{Aut}(\mathcal{Y})|$ with the equality holding if and only if $\operatorname{Sp}(\Gamma, \mathcal{Y})$ is not arc-transitive.

 $\operatorname{Sp}(\Gamma,\mathcal{Y})) \text{ is not arc-transitive } \iff |\operatorname{Aut}(\operatorname{Sp}(\Gamma,\mathcal{Y}))| = |\operatorname{Aut}(\mathcal{Y})|.$

A. Ramos-Rivera (joint work with P. Potočnik, M. Toledo, S. Wilson)

イロト イロト イヨト イヨト

AGTIW

Cycle structure

Theorem (Š.M,P.P, S.W.)

Let G be an arc-transitive group of automorphisms of a connected tetravalent graph Γ . Let cs(G) denote the number of G-invariant cycle decompositions of Γ . Then the following holds:

(i) If G is 2-arc-transitive (equivalently,
$$G_v^{\Gamma(v)} \cong A_4$$
 or S_4), then $\operatorname{cs}(G) = 0$.

(ii) If
$$G_v^{\Gamma(v)} \cong D_4$$
 or C_4 , then $\operatorname{cs}(G) = 1$;

(iii) If
$$G_v^{\Gamma(v)} \cong C_2 \times C_2$$
, then $\operatorname{cs}(G) = 3$.

A. Ramos-Rivera (joint work with P. Potočnik, M. Toledo, S. Wilson)

イロト イロト イヨト イヨト

Constructing cubic vertex-transitive graphs

- **1** (Family) tetravalent arc-transitive graph(s).
- 2 Orbits of consistent cycles.
- 3 Cycle structures.
- 4 The split graphs.
- **5** (Family) Cubic vertex transitive graph.

イロト イポト イヨト イヨト

Tetravalent arc-transitive graphs

A. Ramos-Rivera (joint work with P. Potočnik, M. Toledo, S. Wilson)

Tetravalent Bicirculant graphs

A graph Γ is said to be **bicirculant** provided that it has a symmetry ρ which moves its 2n vertices in two cycles, each of length n.

We let u_i, v_i for $i \in \mathbb{Z}_n$ be its vertices and assume that

$$\rho = (u_0, u_1, u_2 \dots u_{-2}, u_{-1})$$

$$(v_0, v_1, v_2 \dots v_{-2}, v_{-1}).$$

A. Ramos-Rivera (joint work with P. Potočnik, M. Toledo, S. Wilson)

イロト イ団ト イモト イモト

Tetravalent Edge-Transitive Bicirculant graphs

There are two families of such graphs:

(I. Kovács, B. Kuzman, A. Malnič, S. Wilson)

1 The Rose Window graphs. Here, the graph $R_n(a, r)$ has four kinds of edges

(a)
$$\{u_i, u_{i+1}\}$$

(b) $\{u_i, v_i\}$
(c) $\{v_i, u_{i+a}\}$
(d) $\{v_i, v_{i+r}\}$

2 The bipartite dihedrants. Here, the graph $BD_n(0, a, b, c)$ has all edges of the form $\{u_i, v_{i+s}\}$ for $s \in \{0, a, b, c\}$)

Cycle structur

Bicirculant graphs

Rose Window graphs

References 00

AGTIW

The Rose Window graphs - $R_n(a, r)$

Let *n* be an integer, $n \ge 3$, and let $a, r \in \mathbb{Z}_n \setminus \{0\}$. The **Rose window** graph $R_n(a, r)$ is then defined to have the vertex-set

 $\{u_i : i \in \mathbb{Z}_n\} \cup \{v_i : i \in \mathbb{Z}_n\}$ of cardinality 2n and the edges being of four types:

- (a) rim edges: $\{u_i, u_{i+1}\}, i \in \mathbb{Z}_n;$
- (b) in-spokes: $\{u_i, v_i\}, i \in \mathbb{Z}_n$;
- (c) out-spokes: $\{v_i, u_{i+a}\}, i \in \mathbb{Z}_n;$
- (d hub edges: $\{v_i, v_{i+r}\}, i \in \mathbb{Z}_n$.

A. Ramos-Rivera (joint work with P. Potočnik, M. Toledo, S. Wilson)

icirculant graphs

Rose Window graphs

References

Tetravalent Edge-Transitive Bicirculant graphs - RW

There are two obvious automorphisms of a graph $R_n(a, r)$, the rotation

$$o = (u_0, u_1, u_2, \dots, u_{n-2}, u_{n-1})$$

$$(v_0, v_1, v_2 \dots v_{n-2}, v_{n-1})$$

and the *reflection* μ , which interchanges each u_i with u_{n-i} and each v_i with v_{n-i-a} .

イロト イヨト イヨト イヨト

A. Ramos-Rivera (joint work with P. Potočnik, M. Toledo, S. Wilson) Symmetric substructures in tetravalent edge-transitive bicirculant graphs

AGTIW

< ロ > < 回 > < 回 > < 回 > < 回 >

The Rose Window graphs

Theorem (I. Kovács, K. Kutnar, D. Marušič)

An edge-transitive Rose window graph $R_n(a, r)$ with $n \ge 3$, $1 \le a, r \le n-1$, is isomorphic to a member of the following four families:

(I)
$$R_n(2,1)$$
 (PX($n,1$));

(II)
$$R_{2m}(m+2, m+1)$$
 (PX(m, 2));

(III) $R_n(3d+2,9d+1)$ where n = 12m and d = m or -m;

(IV) $R_{2m}(2b, r)$ where, $m \ge 3$, $1 \le b \le m - 1$, $b^2 \equiv \pm 1 \pmod{m}$ and either

(i)
$$r = 1$$
 and $b \notin \{1, m - 1\}$, or
(ii) $r = m + 1$, m is even and $(m \mod 4, b) \neq (0, \frac{m}{2} + 1)$.

A. Ramos-Rivera (joint work with P. Potočnik, M. Toledo, S. Wilson)

Cycle structur

Bicirculant graphs

References

AGTIW

Cycle structures

Family (I) - $R_n(2, 1)$ (PX(n, 1)): (R. Jajcay, P. Potočnik, S. Wilson,)

A. Ramos-Rivera (joint work with P. Potočnik, M. Toledo, S. Wilson)

Bicirculant graphs

Splits of cycle structure

$$\mathsf{Family}\ (\mathrm{I})\ \text{-}\ \mathrm{R}_{\textit{n}}(2,1)\ -\ \mathcal{S}{p}\mathrm{PX}(\textit{n},1)\text{;}$$

A. Ramos-Rivera (joint work with P. Potočnik, M. Toledo, S. Wilson)

Bicirculant graphs 00

イロト イポト イヨト イヨト

AGTIW

Splits of cycle structure

Let $\Gamma = R_n(2,1)$ and $\Gamma' = Sp(\Gamma, \mathcal{Y})$. Let $G' = Aut(\Gamma')$. Here 'CL' stands for the length of the cycles in the cycle structure:

\mathcal{Y}	CL	Cond	Bipartite	$ \operatorname{Aut}(\mathcal{Y}) $	$\Gamma' = \operatorname{Sp}(\Gamma, \mathcal{Y})$	$Girth(\Gamma')$	ESignature	Bip
\mathcal{Y}^*	4	-	if <i>n</i> even	2n(2 ⁿ)	$\Gamma(n)$ HTG $(1, 4n, 2n - 1)$	4	(0, 1, 1)	Yes
\mathcal{Y}_{10^*}'	2 <i>n</i>	2 <i>n</i>	Yes	8 <i>n</i>	GP(2n, n-1) HTG(2, 2n, n)	6	(2, 2, 2)	Yes
\mathcal{Y}_{10*}	n	2 n	Yes	8 <i>n</i>	HTG(4,n,0)	6	(2, 2, 2)	Yes
\mathcal{Y}_{110*}	п	3 n	No	8 <i>n</i>		7	(4, 4, 6)	No

Table: Cycle Structures in $R_n(2,1) = PX(n,1)$.

A. Ramos-Rivera (joint work with P. Potočnik, M. Toledo, S. Wilson)

Cycle structure

Bicirculant graphs 00 Rose Window graphs

References

Splits of cycle structure

A. Ramos-Rivera (joint work with P. Potočnik, M. Toledo, S. Wilson)

Symmetric substructures in tetravalent edge-transitive bicirculant graphs

AGTIW

Cycle structure

Bicirculant graphs

Rose Window graphs

References

Splits of cycle structure

A. Ramos-Rivera (joint work with P. Potočnik, M. Toledo, S. Wilson)

AGTIW

Cubic vertex-transitive graphs	Cycle structure	Bicirculant graphs	Rose Window graphs	References
			000000000000000	

Splits of cycle structure

For a positive integer *n* divisible by 3, let $K = \mathbb{Z}_2^2$, let

$$A = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix},$$

and let $e = (1,0) \in K$. We define the graph A(n) by letting

$$V(A(n)) = \mathbb{Z}_n \times K;$$

$$E(A(n)) = \{\{(i, x), (i + 1, x)\} : x \in K, i \in \mathbb{Z}_n\}$$

$$\cup\{(i, x), \{(i, x + eA^i)\} : x \in K, i \in \mathbb{Z}_n\}.$$

AGTIW

A. Ramos-Rivera (joint work with P. Potočnik, M. Toledo, S. Wilson)

Cycle structur

Bicirculant graphs 00

Rose Window graphs

References

CVT with girth 7

• Observe that A(n) is in fact equal to the Cayley graph $Cay(G; \{(0, e), (1, 0)\}$ where $G = \mathbb{Z}_n \ltimes_{\Theta} \mathbb{Z}_2^2$ with $\Theta: \mathbb{Z}_n \to GL(2, 2),$ $\Theta(i) = A^i.$

Girth 7.

- Edge-signature (4, 4, 6).
- No AT.
- CVT[36, 2] = A(9).

イロト イポト イヨト イヨト

Bicirculant graphs 00

AGTIW

Splits of cycle structure

Let $\Gamma = \operatorname{R}_{2m}(m+2, m+1)$ for $m \geq 3$.

Structure	CL	Cond	Bipartite	$ \operatorname{Aut}(\mathcal{Y}) $	Γ′	g(Γ′)	ESig	
\mathcal{Y}^*	4	-	if <i>m</i> even	$2m(2^{m})$	SpPX(m, 2)	4	(0, 1, 1)	
\mathcal{Y}_{100*}	т	3 <i>m</i>	Yes	16 <i>m</i>		8	(4, 4, 4)	if n
Y'_{100*}	2 <i>m</i>	3 <i>m</i>	No	16 <i>m</i>		8	(4, 4, 4)	if n
\mathcal{Y}_{1100*}	т	4 <i>m</i>	Yes	16 <i>m</i>	trun. of maps of type $\{4, m\}$	8	(1, 1, 2)	,
\mathcal{Y}'_{1100*}	2 <i>m</i>	4 <i>m</i>	Yes	16 <i>m</i>	trun. of maps of type $\{4, 2m\}$	8	(1, 1, 2)	,

Table: Cycle Structures in $R_{2m}(m+2, m+1)$

A. Ramos-Rivera (joint work with P. Potočnik, M. Toledo, S. Wilson)

Bicirculant graphs 00

Splits of cycle structure

Let $\Gamma = \operatorname{R}_{2m}(m+2, m+1)$ for $m \geq 3$.

Structure	CL	Cond	Bipartite	$ \operatorname{Aut}(\mathcal{Y}) $	Γ′	g(Γ′)	ESig	Bip	T
\mathcal{Y}^*	4	-	if <i>m</i> even	$2m(2^{m})$	SpPX(m, 2)	4	(0, 1, 1)		
\mathcal{Y}_{100*}	т	3 <i>m</i>	Yes	16 <i>m</i>	Cover of A(4m)	8	(4, 4, 4)	if <i>m</i> even	9
Y'_{100*}	2 <i>m</i>	3 <i>m</i>	No	16 <i>m</i>	Cover of A(4m)	8	(4, 4, 4)	if <i>m</i> even	
\mathcal{Y}_{1100*}	т	4 <i>m</i>	Yes	16 <i>m</i>	Cover of $DP(m, 1)$	8	(1, 1, 2)	Yes	
${\cal Y}'_{1100*}$	2 <i>m</i>	4 m	Yes	16 <i>m</i>	Cover of $DP(m, 1)$	8	(1, 1, 2)	Yes	

Table: Cycle Structures in $R_{2m}(m+2, m+1)$

A. Ramos-Rivera (joint work with P. Potočnik, M. Toledo, S. Wilson)

Cycle structure

Bicirculant graphs 00 Rose Window graphs

イロト イポト イヨト イヨト

References

Splits of cycle structure

There are 27 non-isomorphic cycle structures relate to edge-transitive Rose Windows graphs, + BD

Most of the automorphism groups of such tetravalent graphs are 1-regular.

A. Ramos-Rivera (joint work with P. Potočnik, M. Toledo, S. Wilson) Symmetric substructures in tetravalent edge-transitive bicirculant graphs

Cubic	graphs

Cycle structur

Bicirculant graphs 00

Cycle structure

Theorem

Let Γ be a tetravalent graph, $uv \in E(\Gamma)$ and $G \leq \operatorname{Aut}(\Gamma)$ acting regularly on the arcs of Γ . Let $\nu \in G$, such that $u^{\nu} = v$ and $v^{\nu} = u$, and let α, β, γ be the three non-identity elements of $H = G_u$. We consider two cases for the structure of H:

- 1 *H* is cyclic, i.e., isomorphic to C₄. Then there is one orbit of *G*-chiral consistent cycles, one of *G*-reflexible consistent cycles, **one cycle structure**, and at most one semitransitive orientation. Further, there is one rotary map \mathcal{M} with $G \leq \operatorname{Aut}^+(\mathcal{M})$. This map is *G*-chiral and its set of faces is the unique orbit of *G*-chiral consistent cycles. Moreover, Γ admits a semitransitive orientation relative to *G* if and only if the map \mathcal{M} is face-bipartite .
- **2** *H* is not cyclic, so *H* is isomorphic to $C_2 \times C_2$. Then, relative to *G*, there are three orbits of reflexible consistent cycles (with the shunts $\alpha\nu$, $\beta\nu$ and $\gamma\nu$, respectively), three cycle structures, at most three semitransitive orientations and no rotary map with $Aut(\mathcal{M}) \leq G$. If Δ is a

A. Ramos-Rivera (joint work with P. Potočnik, M. Toledo, S. Wilson)

< □ > < □ > < □ > < □ > < □ >

Work in progress..

- Database for CVT.
- For all tetravalent edge-transitive bicirculant graphs:
 - Consistent cycles,
 - Cycle structure,
 - Splits,
 - Rotary (edge-transitive) Maps,
 - **.**..
- Classification of all finite connected cubic vertex-transitive tetracirculants (AT,GRR, *Type*2*).

The type 2^{*} once are splittings of tetravalent edge-transitive bicirculant graphs.

Not all the CVT that are Sp of tetravalent edge-transitive bicirculant graphs are tetracirculants*

Generalization of the splits..

References

- N. Biggs, Aspects of symmetry in graphs, Algebraic methods in graph theory, Vol. I, II (Szeged, 1978), pp. 27–35, Colloq. Math. Soc. János Bolyai, 25, North-Holland, Amsterdam-New York, 1981.
- I. Hubard, A. Ramos-Rivera, P. Šparl, Arc-tramsitive maps with underlying Rose Window graphs, J. Graph Theory. 20221; 96:203-230.
- R. Jajcay, P. Potocnik and S. Wilson, The Praeger-Xu graphs: Cycle structures, maps and semitransitive orientations, Acta Math. Univ. Comenianae 88 (2) (2019), 269-291.
- I. Kovács, B. Kuzman, A. Malnič, On non-normal arc transitive 4-valent dihedrants, Acta Math. Sin. 26 (2010), 1485–1498.
- I. Kovács, K. Kutnar, D. Marušič, Classification of edge-transitive rose window graphs, Journal of Graph Theory 65, 3(2010), 216-231.
- I. Kovács, B. Kuzman, A. Malnič, S. Wilson, Characterization of edge-transitive 4-valent bicirculants, J. Graph Theory 66 (2011), 441–463.
- I. Kovács, K. Kutnar, J. Ruff, Rose window graphs underlying rotary maps, Discrete Mathematics, 310, (2010), 1802-1811.
- D. Marušič, Half-transitive group actions on finite graphs of valency 4, J. Comb. Theory, Ser. B 73 (1998) 41–76.
- Š. Miklavič, P. Potočnik and S. Wilson, Arc-transitive cycle decompositions of tetravalent graphs, J. Combin. Theory Ser. B 98 (2008), 1181–1192.
- Š. Miklavič, P. Potočnik, S. Wilson, Consistent cycles in graphs and digraphs, Graphs Combin. 23 (2007), 205–216.
- Š. Miklavič, P. Potočnik, S. Wilson, Overlap in consistent cycles, J. Graph Theory 55 (2007), 55-71.
- S. Wilson, Operators over regular maps, Pacific J. Math. 81 (1979), no. 2, 559–568.
- S. Wilson, Rose Window Graphs, Ars Math, Contemp. 1 (2008) 7-19.

A. Ramos-Rivera (joint work with P. Potočnik, M. Toledo, S. Wilson)

< □ > < □ > < □ > < □ > < □ >

thank you! :)

A. Ramos-Rivera (joint work with P. Potočnik, M. Toledo, S. Wilson)

